

Available at www.**Elsevier**Mathematics.com

Statistics & Probability Letters 65 (2003) 401-410

www.elsevier.com/locate/stapro

Chover-type laws of the iterated logarithm for weighted sums

Liang Peng^a, Yongcheng Qi^{b,*}

^aSchool of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332-0160, USA ^bDepartment of Mathematics and Statistics, University of Minnesota Duluth, SCC 140, 1117 University Drive, Duluth, MN 55812, USA

Received March 2003; accepted August 2003

Abstract

In this paper, a Chover-type law of the iterated logarithm is established for the weighted sums of independent and identically distributed random variables with a distribution in the domain of attraction of a stable law. (c) 2003 Elsevier B.V. All rights reserved.

MSC: 60F15; 60G50

Keywords: Almost sure convergence; Chover-type law of the iterated logarithm; Stable law; Weighted sum

1. Introduction

Let $\{X, X_n, n \ge 1\}$ be a sequence of independent and identically distributed (i.i.d.) random variables with a distribution function $F(x) = P(X \le x)$, and *h* be a function defined over [0, 1]. A weighted sum is defined as

$$S_n(h) = \sum_{k=1}^n h\left(\frac{k}{n}\right) X_k.$$

In case h(x) = 1 for $x \in [0, 1]$, $S_n := S_n(h) = S_n(1)$ becomes the partial sum.

When *h* belongs to a certain class of continuous functions over [0, 1], the laws of the iterated logarithm for the weighted sums $S_n(h)$ have been studied by many authors, for example, Gaposkin (1965), Tomkins (1976), Lai and Wei (1982), Stadtmüller (1984), Li and Tomkins (1996). A recent

^{*} Corresponding author. Fax: +1-218-726-8399.

E-mail address: yqi@d.umn.edu (Y. Qi).

result by Li and Tomkins (1996) showed that

$$\limsup_{n \to \infty} \frac{S_n(h)}{(2n \log \log n)^{1/2}} = \left(\int_0^1 h(x)^2 \,\mathrm{d}x\right)^{1/2} \quad \text{a.s.}$$
(1.1)

if and only if E(X) = 0 and $E(X^2) = 1$. Therefore, if $E(X^2) = \infty$, an analogue of (1.1) is no longer valid. However, for the partial sum S_n , Chover (1966) showed that

$$\limsup_{n \to \infty} \left(\frac{|S_n|}{n^{1/\alpha}} \right)^{1/\log \log n} = e^{1/\alpha} \quad \text{a.s.}$$
(1.2)

when X has a symmetric stable distribution with exponent $\alpha \in (0, 2)$, that is,

$$E(\exp(itX)) = \exp(-|t|^{\alpha}) \quad \text{for } t \in \mathbb{R}.$$
(1.3)

This motivated the study of Chover-type law of the iterated logarithm for weighted sums in Chen (2002). One of the results in Chen (2002) is the following: under condition (1.3) and certain constraints for h,

$$\limsup_{n \to \infty} \left(\frac{|S_n(h)|}{n^{1/\alpha}} \right)^{1/\log \log n} = e^{1/\alpha} \quad \text{a.s.}$$
(1.4)

Note that Qi and Cheng (1996) extended the Chover-type law of the iterated logarithm for the partial sums to the case where the underlying distribution is in the domain of attraction of a stable distribution (see below for details).

Let L_{α} denote a stable distribution with exponent $\alpha \in (0,2)$. Recall that the distribution of X is said to be in the domain of attraction of L_{α} if there exist some constants $A_n \in R$ and $B_n > 0$ such that

$$\frac{S_n - A_n}{B_n} \xrightarrow{d} L_{\alpha}.$$
(1.5)

Under (1.5), Qi and Cheng (1996) showed that

$$\limsup_{n\to\infty}\left(\frac{|S_n-A_n|}{B_n}\right)^{1/\log\log n}=\mathrm{e}^{1/\alpha}\quad\text{a.s.}$$

It is easy to verify that in the special case (1.3), (1.5) holds with $A_n = 0$ and $B_n = n^{1/\alpha}$, and that L_{α} has the same distribution as that of X. Based on Chen (2002) and Qi and Cheng (1996), we expect that the Chover-type law of the iterated logarithm for weighted sums holds under the general condition (1.5).

We organize this paper as follows. Our main results are presented in Section 2 and all proofs are postponed till Section 3.

2. Main results

Let BV[0, 1] and B[0, 1] denote sets of all bounded variation functions and of all bounded functions over [0, 1], respectively. As in the introduction, let $\{X, X_n, n \ge 1\}$ be a sequence of i.i.d. random variables satisfying (1.5).

It is well known that (1.5) holds if and only if

$$1 - F(x) = \frac{C_1(x)l(x)}{x^{\alpha}} \quad \text{and} \quad F(-x) = \frac{C_2(x)l(x)}{x^{\alpha}}, \quad \text{for } x > 0,$$
(2.1)

where, for x > 0, $C_i(x) \ge 0$, $\lim_{x\to\infty} C_i(x) = C_i$, i = 1, 2, $C_1 + C_2 > 0$, and $l(x) \ge 0$ is a slowly varying function, i.e.,

$$\lim_{t \to \infty} \frac{l(tx)}{l(t)} = 1 \quad \text{for } x > 0.$$

Set G(x) = P(|X| > x), define

$$B(x) = \inf\left\{y: G(y) \le \frac{1}{x}\right\}, \quad x > 0,$$
(2.2)

and write

$$\mu_n(c) = n \int \frac{x}{1+x^2} \,\mathrm{d}F(cx) \quad \text{for } c > 0.$$

From Loève (1977), (2.1) is equivalent to the statement that $(S_n - \mu_n(B(n)))/B(n)$ converges in distribution to a stable distribution with exponent α . Moreover, we have $\lim_{n\to\infty} B_n/B(n) \in (0,\infty)$ and $\lim_{n\to\infty} (A_n - \mu_n(B(n)))/B(n) \in R$ from convergence of types theorem. In particular, if $\alpha > 1$ then $E(|X|) < \infty$, and one can always choose $B_n = B(n)$ and $A_n = nE(X)$ in (1.5). If $\alpha < 1$ then one can set $A_n = 0$ in (1.5).

Without loss of generalization, we always assume that the condition (1.5) holds with B(n) defined in (2.2) and some constants A_n with $A_0 = 0$. Set $\lg_0(x) = x$ and $\lg_k(x) = \log \max(\lg_{k-1}(x), e)$ for $k \ge 1$. Our main theorems are as follows.

Theorem 2.1. If $h \in BV[0,1]$ with $h(x_0) \neq 0$ for some $x_0 \in (0,1]$, and h is continuous at x_0 , then under condition (1.5), for any integer $r \ge 1$,

$$\limsup_{n \to \infty} \left(\frac{|S_n(h) - C_n|}{B(\prod_{i=0}^{r-1} \lg_i(n))} \right)^{1/\lg_{r+1}(n)} = e^{1/\alpha} \quad a.s.,$$
(2.3)

where

$$C_n = \sum_{k=1}^n h\left(\frac{k}{n}\right) \left(A_k - A_{k-1}\right)$$

Remark 1. If $\alpha \in (1,2)$, one can set $A_n = nE(X)$ in Theorem 2.1, and (2.3) holds with

$$C_n = E(X) \sum_{k=1}^n f\left(\frac{k}{n}\right) = nE(X) \int_0^1 h(x) \,\mathrm{d}x + O(1)$$

since $h \in BV[0,1]$; if $\alpha < 1$, set $A_n = 0$ and then (2.3) holds with $C_n = 0$.

Remark 2. Theorem 2.1 generalizes the result (1.4) in Chen (2002) in two directions: (i) the underlying distributions are allowed from the symmetric stable distributions to those in the domain of attraction of a stable law, and (ii) more accurate results than the law of the iterated logarithm are

provided. As a consequence Chover-type law of the iterated logarithm is obtained by taking r = 2in Theorem 2.1, i.e.,

$$\limsup_{n\to\infty}\left(\frac{|S_n(h)-C_n|}{B(n)}\right)^{1/\log\log n}=\mathrm{e}^{1/\alpha}\quad\text{a.s.}$$

Next we consider more general weighted sums like Chen (2002) did. More specifically, consider an array of weights $\{a_{n,k}, 1 \le k \le n, n \ge 1\}$ satisfying conditions

(C1) $\sup_{n \ge 1} (\sum_{k=1}^{n-1} |a_{n,k} - a_{n,k+1}| + |a_{n,n}|) < \infty;$ (C2) There exist two increasing sequences of $\{n(k), k \ge 1\}$ and $\{m(k), k \ge 1\}$ such that $\sup_{k \ge 1}$ $(n(k+1) - n(k)) < \infty$ and $\liminf_{k \to \infty} |a_{n(k),m(k)}| > 0.$

Note that (C1) is satisfied if $\sup_{n \ge 1} \max_{1 \le k \le n} |a_{n,k}| < \infty$.

Theorem 2.2. Assume the conditions in Theorem 2.1 and conditions (C1) and (C2) are true. Then

$$\limsup_{n \to \infty} \left(\frac{\left| \sum_{k=1}^{n} a_{n,k} X_k - C_n \right|}{B(\prod_{i=0}^{r-1} \lg_i(n))} \right)^{1/\lg_{r+1}(n)} = e^{1/\alpha} \quad a.s$$

for all $r \ge 1$, where

$$C_n = \sum_{k=1}^n a_{n,k} (A_k - A_{k-1}).$$

A straightforward application of Theorem 2.2 with $a_{n,k} = \sum_{i=k}^{n} h(i/n)$ leads to the following theorem.

Theorem 2.3. Let $h \in B[0,1]$ with $\int_{x_0}^1 h(x) \neq 0$ for some $x_0 \in (0,1)$. Then under condition (1.5)

$$\limsup_{n \to \infty} \left(\frac{\left| \sum_{k=1}^{n} h(\frac{k}{n}) S_k - C_n \right|}{B(\prod_{i=0}^{r-1} \lg_i(n))} \right)^{1/\lg_{r+1}(n)} = e^{1/\alpha} \quad a.s.,$$

for any $r \ge 1$, where

$$C_n = \sum_{k=1}^n h\left(\frac{k}{n}\right) A_k.$$

As another application of Theorem 2.2, we get the following Chover-type law of the iterated logarithm for moving sums.

Theorem 2.4. Let $\{b_n\}$ be a sequence of real numbers satisfying $0 < \sum_{n=1}^{\infty} |b_n| < \infty$. For $n \ge 1$ set $Y_n = \sum_{k=1}^n b_{n-k+1}X_k$. Then under condition (1.5)

$$\limsup_{n \to \infty} \left(\frac{\left| \sum_{k=1}^{n} Y_k - C_n \right|}{B(\prod_{i=0}^{r-1} \lg_i(n))} \right)^{1/\lg_{r+1}(n)} = e^{1/\alpha} \quad a.s.,$$

for any $r \ge 1$, where

$$C_n = \sum_{k=1}^n b_k (A_k - A_{k-1}).$$

3. Proofs

We need some lemmas before we proceed to the proofs of our theorems.

Lemma 3.1. Suppose l(x) is a slowly varying function at infinity and $g(x) \ge 1$ is an arbitrary function. Then for any given $\delta > 0$, there exists an $x_0 > 0$ such that

$$\frac{1}{2}g^{-\delta}(x) < \inf_{x \le y \le xg(x)} \frac{l(y)}{l(x)} \le \sup_{x \le y \le xg(x)} \frac{l(y)}{l(x)} < 2g^{\delta}(x) \quad for \ all \ x > x_0$$

Lemma 3.2. Assume that $\{Y_n, n \ge 1\}$ is a sequence of i.i.d. random variables and $\{a_n\}$ is a sequence of positive constants satisfying

(a) $\{a_n/n^{1/\gamma}\}$ is nondecreasing ultimately for some $\gamma \in (0,2)$; (b) $\sup_n (a_{2n}/a_n) < \infty$. If $\sum_n P(|Y_1| > a_n) < \infty$, then $\lim_{n \to \infty} \frac{\sum_{j=1}^n Y_j - nEY_1I(|Y_1| \le a_n)}{a_n} = 0$ a.s.

If
$$\sum_{n} P(|Y_1| > a_n) = \infty$$
, then

$$\limsup_{n \to \infty} \frac{|\sum_{j=1}^{n} Y_j - c_n|}{a_n} = \infty \quad a.s.$$

for every sequence $\{c_n\}$.

Lemma 3.1 follows from Bingham et al. (1987, Theorem 1.5.6, p. 25), and Lemma 3.2 follows from Mori (1977, Theorem 1 and Lemmas 1 and 2).

The following lemma plays a central role in the proofs of our theorems.

Lemma 3.3. Let $\{p_n\}$ be a sequence of non-decreasing numbers with $p_n \ge 1$ and $\sup_n (p_{2n}/p_n) < \infty$. Then, under (1.5), we have with probability one

$$\limsup_{n \to \infty} \frac{|S_n - A_n|}{B(np_n)} = 0$$
(3.1)

provided that $\sum_{n=1}^{\infty} (1/n p_n) < \infty$.

Proof. Note that under (2.1), G(x) = P(|X| > x) is a regularly varying function with index $-\alpha$ at infinity. From De Haan (1970) or Bingham et al. (1987), B(x) is a regularly varying function with

index $1/\alpha$ at infinity, and thus B(x) has the following representation:

$$B(x) = c_1(x)x^{1/a} \exp\left\{\int_1^x \frac{b_1(u)}{u} \,\mathrm{d}u\right\},\,$$

where $\lim_{x\to\infty} c_1(x) = c_1 \in (0,\infty)$ and $\lim_{x\to\infty} b_1(x) = 0$. Using the properties of regular variation (see Bingham et al., 1987), we have

$$\lim_{x \to \infty} xG(B(x)) = 1.$$
(3.2)

Define

$$g(x) = c_1 x^{1/\alpha} \exp\left\{\int_1^x \frac{b_1(u)}{u} \,\mathrm{d}u\right\}.$$

It is easy to check that $G(x) \sim g(x)$ as $x \to \infty$ and that for any given $\gamma \in (\alpha, 2)$, there exists an $x_{\gamma} > 0$ such that $g(x)/x^{1/\gamma}$ is increasing in (x_{γ}, ∞) . Therefore $\lim_{n\to\infty} (B(n)/g(n)) = 1$ and the sequence $a_n = g(np_n)$ satisfies the conditions of Lemma 3.2. Moreover,

$$G(a_n) = G(g(np_n)) \sim G(B(np_n)) \sim \frac{1}{np_n}$$

This implies that $\sum_{n=1}^{\infty} P(|X| > a_n) < \infty$. So, from Lemma 3.2,

$$\limsup_{n \to \infty} \frac{|S_n - nE(XI(|X| \le a_n)))|}{B(np_n)} = \limsup_{n \to \infty} \frac{|S_n - nE(XI(|X| \le a_n))|}{a_n} = 0 \quad \text{a.s.}$$
(3.3)

Since $p_n \to \infty$ and $B(n) = o(B(np_n))$, we have from (1.5) that

$$\frac{S_n-A_n}{B(n\,p_n)} \xrightarrow{\mathrm{p}} 0,$$

which, together with (3.3), yields

$$\frac{A_n - nE(XI(|X| \leq a_n))}{B(np_n)} \to 0.$$

Hence, the lemma follows from this approximation and (3.3). \Box

Lemma 3.4. Let $\{p_n\}$ be a sequence of non-decreasing numbers with $p_n \ge 1$ and $\sup_n(p_{2n}/p_n) < \infty$. Suppose $h \in BV[0,1]$ with $h(x_0) \ne 0$ for some $x_0 \in (0,1]$, and h is continuous at x_0 . Then under (1.5), with probability one

$$\limsup_{n \to \infty} \frac{|S_n(h) - C_n|}{B(np_n)} = 0$$
(3.4)

if $\sum_{n=1}^{\infty} (n p_n)^{-1} < \infty$, and

$$\limsup_{n \to \infty} \frac{|S_n(h) - C_n|}{B(np_n)} = \infty$$
(3.5)

if
$$\sum_{n=1}^{\infty} (n p_n)^{-1} = \infty$$
.

Proof. For any $h \in BV[0,1]$, there exists a constant C such that $|h(x)| \leq C$ and $\sum_{k=1}^{n-1} |h(\frac{k}{n}) - h(k+1)| \leq C$ $|1/n| \leq C$ for all $n \geq 1$. Therefore,

$$\begin{aligned} |S_n(h) - C_n| &= \left| \sum_{k=1}^n h\left(\frac{k}{n}\right) \left[X_k - (A_k - A_{k-1})\right] \right| \\ &= \left| \sum_{k=1}^{n-1} \left[h\left(\frac{k}{n}\right) - h\left(\frac{k+1}{n}\right) \right] (S_k - A_k) + h(1)(S_n - A_n) \right| \\ &\leq 2C \max_{1 \le k \le n} |S_k - A_k|. \end{aligned}$$

Since (3.1) implies $\limsup_{n\to\infty} [(\max_{1\le k\le n} |S_k - A_k|)/B(np_n)] = 0$ due to the fact that $B(np_n)$ is a non-decreasing function of n, (3.4) follows from Lemma 3.3 if $\sum_{n=1}^{\infty} (np_n)^{-1} < \infty$. Next, we assume $\sum_{n=1}^{\infty} (np_n)^{-1} = \infty$ and shall prove (3.5). It is easily seen that $\limsup_{n\to\infty} [|S_n(h) - C_n|/B(np_n)]$ is measurable with respect to the tail- σ field generated by the sequence $\{X_n, n \ge 1\}$ (see Chow and Teicher, 1997, p. 64). From Kolmogorov zero-one law, there is a non-random constant $d \in [0,\infty]$ such that with probability one

$$\limsup_{n\to\infty}\frac{|S_n(h)-C_n|}{B(np_n)}=d.$$

So we need to show $d = \infty$. Suppose at the moment that $d < \infty$. Then we will obtain some contradiction.

Since $\sum_{n=1}^{\infty} (np_n)^{-1} = \infty$, there exists a sequence of non-decreasing positive numbers, $\{r_n\}$, such that $r_n \to \infty$ and

$$\sum_{n=1}^{\infty} \frac{1}{n p_n r_n} = \infty.$$
(3.6)

Write $B(x) = x^{1/\alpha}L(x)$, where L(x) is a slowly varying function. By applying Lemma 3.1 with $0 < \delta < 1/\alpha$ we obtain that $B(np_nr_n)/B(np_n) \to \infty$ as $n \to \infty$. Then with probability one,

$$\lim_{n\to\infty}\frac{|S_n(h)-C_n|}{B(np_nr_n)}=0.$$

Let $\{X', X'_n, n \ge 1\}$ be an independent copy of $\{X, X_n, n \ge 1\}$ and set $X^s = X - X'$ and $X^s_n = X_n - X'_n$ for $n \ge 1$. Then

$$\lim_{n\to\infty}\frac{|\sum_{k=1}^n h(\frac{k}{n})X'_k - C_n|}{B(n\,p_n r_n)} = 0.$$

Further we have

$$\lim_{n \to \infty} \frac{\left|\sum_{k=1}^{n} h(\frac{k}{n}) X_{k}^{s}\right|}{B(n p_{n} r_{n})} = 0.$$
(3.7)

Since the random variables X_n^s are symmetric, we could show that (3.7) implies

$$\sum_{n=1}^{\infty} P(|X^s| > B(np_n r_n)) < \infty$$
(3.8)

in a way similar to the proof of Theorem 2.1 of Chen (2002). Further, by using the following inequality:

$$P(|X - m(X)| > x) \le 2P(|X^s| > x) \quad \text{for all } x > 0$$

where m(X) denotes the median of the random variable X (see Chow and Teicher, 1997, Lemma 10.1.1, p. 355), we obtain

$$\sum_{n=1}^{\infty} P(|X - m(X)| > B(n p_n r_n)) < \infty.$$
(3.9)

Since

$$G(x + |m(X)|) \le P(|X - m(X)| > x) \le G(x - |m(X)|)$$

for any x > |m(X)|, and G(x) is regularly varying, it follows from (3.2) that as $n \to \infty$

$$P(|X - m(X)| > B(np_nr_n)) \sim G(B(np_nr_n)) \sim \frac{1}{np_nr_n}.$$

So (3.9) implies $\sum_{n=1}^{\infty} (n p_n r_n)^{-1} < \infty$, which is in contradiction with (3.6), i.e., $d = \infty$. This completes the proof of this lemma. \Box

Proof of Theorem 2.1. Let "i.o." denote "infinitely often". It suffices to show that for every $\varepsilon \in (0, 1)$

$$P\left(\left(\frac{|S_n(h) - C_n|}{B(\prod_{i=0}^{r-1} \lg_i(n))}\right)^{1/\lg_{r+1}(n)} > e^{(1+\varepsilon)/\alpha} \text{ i.o.}\right) = 0$$

and

$$P\left(\left(\frac{|S_n(h) - C_n|}{B(\prod_{i=0}^{r-1} \lg_i(n))}\right)^{1/\lg_{r+1}(n)} > e^{(1-\varepsilon)/\alpha} \text{ i.o.}\right) = 1,$$

or equivalently

$$P\left(|S_n(h) - C_n| > B\left(\prod_{i=0}^{r-1} \lg_i(n)\right) e^{((1+\varepsilon)/\alpha)\lg_{r+1}(n)} \text{ i.o.}\right) = 0$$
(3.10)

and

$$P\left(|S_n(h) - C_n| > B\left(\prod_{i=0}^{r-1} \lg_i(n)\right) e^{((1-\varepsilon)/\alpha)\lg_{r+1}(n)} \text{ i.o.}\right) = 1.$$
(3.11)

Take
$$p_n = [\lg_r(n)]^{\pm \varepsilon_1} \prod_{i=1}^r \lg_i(n)$$
 for $\varepsilon_1 = \varepsilon/2$, that is, $n p_n = [\lg_r(n)]^{1\pm \varepsilon_1} \prod_{i=0}^{r-1} \lg_i(n)$. Since

$$\sum_{n=1}^{\infty} \frac{1}{[\lg_r(n)]^{1+\varepsilon_1} \prod_{i=0}^{r-1} \lg_i(n)} < \infty$$

and

$$\sum_{n=1}^{\infty} \frac{1}{[\lg_r(n)]^{1-\varepsilon_1} \prod_{i=0}^{r-1} \lg_i(n)} = \infty,$$

it is readily seen from Lemma 3.4 that

$$P\left(|S_n(h) - C_n| > B\left([\lg_r(n)]^{1+\varepsilon_1}\prod_{i=0}^{r-1}\lg_i(n)\right) \text{ i.o.}\right) = 0$$

and

$$P\left(|S_n(h) - C_n| > B\left([\lg_r(n)]^{1-\varepsilon_1}\prod_{i=0}^{r-1}\lg_i(n)\right) \text{ i.o.}\right) = 1.$$

Therefore, we only need to prove that for all large n

$$B\left(\left[\lg_{r}(n)\right]^{1+\varepsilon_{1}}\prod_{i=0}^{r-1}\lg_{i}(n)\right) < B\left(\prod_{i=0}^{r-1}\lg_{i}(n)\right)e^{\left((1+\varepsilon)/\alpha\right)\lg_{r+1}(n)}$$
(3.12)

and

$$B\left([\lg_{r}(n)]^{1-\varepsilon_{1}}\prod_{i=0}^{r-1}\lg_{i}(n)\right) > B\left(\prod_{i=0}^{r-1}\lg_{i}(n)\right)e^{((1-\varepsilon)/\alpha)\lg_{r+1}(n)}.$$
(3.13)

As in the proof of Lemma 3.4 write $B(x) = x^{1/\alpha}L(x)$, where L(x) is a slowly varying function. By applying Lemma 3.1 to function L(x) with $d = \varepsilon_1/4$ we get for large n

$$\frac{B([\lg_r(n)]^{1+\varepsilon_1}\prod_{i=0}^{r-1}\lg_i(n))}{B(\prod_{i=0}^{r-1}\lg_i(n))} = [\lg_r(n)]^{(1+\varepsilon_1)/\alpha} \frac{L([\lg_r(n)]^{1+\varepsilon_1}\prod_{i=0}^{r-1}\lg_i(n))}{L(\prod_{i=0}^{r-1}\lg_i(n))} \\
\leq 2[\lg_r(n)]^{(1+\varepsilon_1)/\alpha}[\lg_r(n)]^{d(1+\varepsilon_1)/\alpha} \\
\leq 2[\lg_r(n)]^{(1+1.5\varepsilon_1)/\alpha} \\
< [\lg_r(n)]^{(1+2\varepsilon_1)/\alpha} \\
= e^{((1+\varepsilon)/\alpha)\lg_{r+1}(n)},$$

i.e., (3.12). Likewise, we can show (3.13). This completes the proof. \Box

Proof of Theorem 2.2. The proof follows from the lines of that of Theorem 2.1. The key is to show Lemma 3.4 holds for weighted sum $\sum_{k=1}^{n} a_{n,k}X_k$. In particular, if condition (C1) holds, then

$$\left|\sum_{k=1}^{n} a_{n,k} X_k - C_n\right| \leq C \max_{1 \leq k \leq n} |S_k - A_k|$$

for some constant C > 0 (see the proof of Lemma 3.4), and thus (3.4) holds for $\sum_{k=1}^{n} a_{n,k}X_k$; if condition (C2) holds, then $\lim_{n\to\infty} \left[\left| \sum_{k=1}^{n} X_k^s \right| / B(np_nr_n) \right] = 0$, an analogue of (3.7), yields the equation (3.8) which leads to some contradiction as in the proof of Lemma 3.4, that is, condition (C2) guarantees (3.5). The detailed proof is omitted. \Box

References

Bingham, N.H., Goldie, C.M., Teugels, J.L., 1987. Regular Variation. Cambridge University, New York.

Chen, P., 2002. Limiting behavior of weighted sums with stable distributions. Statist. Probab. Lett. 60, 267-375.

Chover, J., 1966. A law of the iterated logarithm for stable summands. Proc. Amer. Math. Soc. 17, 441-443.

- Chow, Y.S., Teicher, H., 1997. Probability Theory: Independence, Interchangeability, Martingale, 3rd Edition. Springer, New York.
- De Haan, L., 1970. On Regular Variation and Its Application to the Weak Convergence of Sample Extremes. Math. Centre Tract 32, Amsterdam.
- Gaposkin, V.F., 1965. The law of the iterated logarithm for Cesaro's and Abel's methods of summation. Theory Probab. Appl. 10, 420–431.
- Lai, T.L., Wei, C.Z., 1982. A law of the iterated logarithm for double arrays of independent random variables with application to regression and time series models. Ann. Probab. 10, 320–335.
- Li, D., Tomkins, R.J., 1996. Laws of the iterated logarithm for weighted sums of independent random variables. Statist. Probab. Lett. 27, 247–254.

Loève, M., 1977. Probability Theory I, 4th Edition. Springer, New York.

- Mori, T., 1977. Stability for sums of i.i.d. random variables when extreme terms are excluded. Z. Wahr. Geb. 40, 159–167.
- Qi, Y., Cheng, P., 1996. A law of the iterated logarithm for partial sums in the domain of attraction of a stable law. Chinese Ann. Math. Ser. A 17, 195–206.
- Stadtmüller, U., 1984. A note on the law of the iterated logarithm for weighted sums of random variables. Ann. Probab. 12, 35–44.
- Tomkins, R.J., 1976. Strong limit theorems for certain arrays of random variables. Ann. Probab. 4, 444-452.