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Chover-type laws of the iterated logarithm for weighted sums
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Abstract

In this paper, a Chover-type law of the iterated logarithm is established for the weighted sums of independent
and identically distributed random variables with a distribution in the domain of attraction of a stable law.
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1. Introduction

Let {X; Xn; n¿ 1} be a sequence of independent and identically distributed (i.i.d.) random variables
with a distribution function F(x) = P(X 6 x), and h be a function de7ned over [0; 1]. A weighted
sum is de7ned as

Sn(h) =
n∑
k=1

h
(
k
n

)
Xk:

In case h(x) = 1 for x∈ [0; 1], Sn := Sn(h) = Sn(1) becomes the partial sum.
When h belongs to a certain class of continuous functions over [0; 1], the laws of the iterated

logarithm for the weighted sums Sn(h) have been studied by many authors, for example, Gaposkin
(1965), Tomkins (1976), Lai and Wei (1982), StadtmAuller (1984), Li and Tomkins (1996). A recent
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result by Li and Tomkins (1996) showed that

lim sup
n→∞

Sn(h)
(2n log log n)1=2 =

(∫ 1

0
h(x)2 dx

)1=2

a:s: (1.1)

if and only if E(X ) = 0 and E(X 2) = 1. Therefore, if E(X 2) =∞, an analogue of (1.1) is no longer
valid. However, for the partial sum Sn, Chover (1966) showed that

lim sup
n→∞

( |Sn|
n1=

)1=log log n

= e1= a:s: (1.2)

when X has a symmetric stable distribution with exponent ∈ (0; 2), that is,

E(exp(itX )) = exp(−|t|) for t ∈R: (1.3)

This motivated the study of Chover-type law of the iterated logarithm for weighted sums in Chen
(2002). One of the results in Chen (2002) is the following: under condition (1.3) and certain
constraints for h,

lim sup
n→∞

( |Sn(h)|
n1=

)1=log log n

= e1= a:s: (1.4)

Note that Qi and Cheng (1996) extended the Chover-type law of the iterated logarithm for the
partial sums to the case where the underlying distribution is in the domain of attraction of a stable
distribution (see below for details).

Let L denote a stable distribution with exponent ∈ (0; 2). Recall that the distribution of X is
said to be in the domain of attraction of L if there exist some constants An ∈R and Bn¿ 0 such that

Sn − An
Bn

d→ L: (1.5)

Under (1.5), Qi and Cheng (1996) showed that

lim sup
n→∞

( |Sn − An|
Bn

)1=log log n

= e1= a:s:

It is easy to verify that in the special case (1.3), (1.5) holds with An = 0 and Bn = n1=, and that
L has the same distribution as that of X . Based on Chen (2002) and Qi and Cheng (1996), we
expect that the Chover-type law of the iterated logarithm for weighted sums holds under the general
condition (1.5).

We organize this paper as follows. Our main results are presented in Section 2 and all proofs are
postponed till Section 3.

2. Main results

Let BV [0; 1] and B[0; 1] denote sets of all bounded variation functions and of all bounded functions
over [0; 1], respectively. As in the introduction, let {X; Xn; n¿ 1} be a sequence of i.i.d. random
variables satisfying (1.5).
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It is well known that (1.5) holds if and only if

1 − F(x) =
C1(x)l(x)

x
and F(−x) =

C2(x)l(x)
x

; for x¿ 0; (2.1)

where, for x¿ 0, Ci(x)¿ 0, limx→∞ Ci(x) = Ci, i = 1; 2, C1 + C2¿ 0, and l(x)¿ 0 is a slowly
varying function, i.e.,

lim
t→∞

l(tx)
l(t)

= 1 for x¿ 0:

Set G(x) = P(|X |¿x), de7ne

B(x) = inf
{
y : G(y)6

1
x

}
; x¿ 0; (2.2)

and write

�n(c) = n
∫

x
1 + x2 dF(cx) for c¿ 0:

From LoLeve (1977), (2.1) is equivalent to the statement that (Sn − �n(B(n)))=B(n) converges in
distribution to a stable distribution with exponent . Moreover, we have limn→∞ Bn=B(n)∈ (0;∞)
and limn→∞ (An − �n(B(n)))=B(n)∈R from convergence of types theorem. In particular, if ¿ 1
then E(|X |)¡∞, and one can always choose Bn = B(n) and An = nE(X ) in (1.5). If ¡ 1 then
one can set An = 0 in (1.5).

Without loss of generalization, we always assume that the condition (1.5) holds with B(n) de7ned
in (2.2) and some constants An with A0 = 0. Set lg0(x) = x and lgk(x) = log max(lgk−1(x); e) for
k¿ 1. Our main theorems are as follows.

Theorem 2.1. If h∈BV [0; 1] with h(x0) 	= 0 for some x0 ∈ (0; 1], and h is continuous at x0, then
under condition (1.5), for any integer r¿ 1,

lim sup
n→∞

(
|Sn(h) − Cn|
B(
∏r−1

i=0 lgi(n))

)1=lgr+1(n)

= e1= a:s:; (2.3)

where

Cn =
n∑
k=1

h
(
k
n

)
(Ak − Ak−1):

Remark 1. If ∈ (1; 2), one can set An = nE(X ) in Theorem 2.1, and (2.3) holds with

Cn = E(X )
n∑
k=1

f
(
k
n

)
= nE(X )

∫ 1

0
h(x) dx + O(1)

since h∈BV [0; 1]; if ¡ 1, set An = 0 and then (2.3) holds with Cn = 0.

Remark 2. Theorem 2.1 generalizes the result (1.4) in Chen (2002) in two directions: (i) the
underlying distributions are allowed from the symmetric stable distributions to those in the domain
of attraction of a stable law, and (ii) more accurate results than the law of the iterated logarithm are
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provided. As a consequence Chover-type law of the iterated logarithm is obtained by taking r = 2
in Theorem 2.1, i.e.,

lim sup
n→∞

( |Sn(h) − Cn|
B(n)

)1=log log n

= e1= a:s:

Next we consider more general weighted sums like Chen (2002) did. More speci7cally, consider
an array of weights {an;k ; 16 k6 n; n¿ 1} satisfying conditions

(C1) supn¿1(
∑n−1

k=1 |an;k − an;k+1| + |an;n|)¡∞;
(C2) There exist two increasing sequences of {n(k); k¿ 1} and {m(k); k¿ 1} such that supk¿1

(n(k + 1) − n(k))¡∞ and lim inf k→∞ |an(k);m(k)|¿ 0.
Note that (C1) is satis7ed if supn¿1 max16k6n |an;k |¡∞.

Theorem 2.2. Assume the conditions in Theorem 2.1 and conditions (C1) and (C2) are true. Then

lim sup
n→∞

(
|∑n

k=1 an;kXk − Cn|
B(
∏r−1

i=0 lgi(n))

)1=lgr+1(n)

= e1= a:s:

for all r¿ 1, where

Cn =
n∑
k=1

an;k(Ak − Ak−1):

A straightforward application of Theorem 2.2 with an;k =
∑n

i=k h(i=n) leads to the following
theorem.

Theorem 2.3. Let h∈B[0; 1] with
∫ 1
x0
h(x) 	= 0 for some x0 ∈ (0; 1). Then under condition (1.5)

lim sup
n→∞

(
|∑n

k=1 h(
k
n)Sk − Cn|

B(
∏r−1

i=0 lgi(n))

)1=lgr+1(n)

= e1= a:s:;

for any r¿ 1, where

Cn =
n∑
k=1

h
(
k
n

)
Ak:

As another application of Theorem 2.2, we get the following Chover-type law of the iterated
logarithm for moving sums.

Theorem 2.4. Let {bn} be a sequence of real numbers satisfying 0¡
∑∞

n=1 |bn|¡∞. For n¿ 1
set Yn =

∑n
k=1 bn−k+1Xk . Then under condition (1.5)

lim sup
n→∞

(
|∑n

k=1 Yk − Cn|
B(
∏r−1

i=0 lgi(n))

)1=lgr+1(n)

= e1= a:s:;
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for any r¿ 1, where

Cn =
n∑
k=1

bk(Ak − Ak−1):

3. Proofs

We need some lemmas before we proceed to the proofs of our theorems.

Lemma 3.1. Suppose l(x) is a slowly varying function at in:nity and g(x)¿ 1 is an arbitrary
function. Then for any given %¿ 0, there exists an x0¿ 0 such that

1
2
g−%(x)¡ inf

x6y6xg(x)

l(y)
l(x)

6 sup
x6y6xg(x)

l(y)
l(x)

¡ 2g%(x) for all x¿x0:

Lemma 3.2. Assume that {Yn; n¿ 1} is a sequence of i.i.d. random variables and {an} is a sequence
of positive constants satisfying

(a) {an=n1=&} is nondecreasing ultimately for some &∈ (0; 2);
(b) supn (a2n=an)¡∞.
If
∑

n P(|Y1|¿an)¡∞, then

lim
n→∞

∑n
j=1 Yj − nEY1I(|Y1|6 an)

an
= 0 a:s:

If
∑

n P(|Y1|¿an) = ∞, then

lim sup
n→∞

|∑n
j=1 Yj − cn|
an

= ∞ a:s:

for every sequence {cn}.

Lemma 3.1 follows from Bingham et al. (1987, Theorem 1.5.6, p. 25), and Lemma 3.2 follows
from Mori (1977, Theorem 1 and Lemmas 1 and 2).

The following lemma plays a central role in the proofs of our theorems.

Lemma 3.3. Let {pn} be a sequence of non-decreasing numbers with pn¿ 1 and supn (p2n=pn)¡∞.
Then, under (1.5), we have with probability one

lim sup
n→∞

|Sn − An|
B(npn)

= 0 (3.1)

provided that
∑∞

n=1 (1=npn)¡∞.

Proof. Note that under (2.1), G(x) = P(|X |¿x) is a regularly varying function with index − at
in7nity. From De Haan (1970) or Bingham et al. (1987), B(x) is a regularly varying function with
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index 1= at in7nity, and thus B(x) has the following representation:

B(x) = c1(x)x1=aexp
{∫ x

1

b1(u)
u

du
}
;

where limx→∞ c1(x) = c1 ∈ (0;∞) and limx→∞ b1(x) = 0. Using the properties of regular variation
(see Bingham et al., 1987), we have

lim
x→∞ xG(B(x)) = 1: (3.2)

De7ne

g(x) = c1x1=exp
{∫ x

1

b1(u)
u

du
}
:

It is easy to check that G(x) ∼ g(x) as x → ∞ and that for any given &∈ (; 2), there exists
an x& ¿ 0 such that g(x)=x1=& is increasing in (x&;∞). Therefore limn→∞ (B(n)=g(n)) = 1 and the
sequence an = g(npn) satis7es the conditions of Lemma 3.2. Moreover,

G(an) = G(g(npn)) ∼ G(B(npn)) ∼ 1
npn

:

This implies that
∑∞

n=1 P(|X |¿an)¡∞. So, from Lemma 3.2,

lim sup
n→∞

|Sn − nE(XI(|X |6 an)))|
B(npn)

= lim sup
n→∞

|Sn − nE(XI(|X |6 an)|
an

= 0 a:s: (3.3)

Since pn → ∞ and B(n) = o(B(npn)), we have from (1.5) that

Sn − An
B(npn)

p→ 0;

which, together with (3.3), yields

An − nE(XI(|X |6 an))
B(npn)

→ 0:

Hence, the lemma follows from this approximation and (3.3).

Lemma 3.4. Let {pn} be a sequence of non-decreasing numbers with pn¿ 1 and supn(p2n=pn)¡∞.
Suppose h∈BV [0; 1] with h(x0) 	= 0 for some x0 ∈ (0; 1], and h is continuous at x0. Then under
(1.5), with probability one

lim sup
n→∞

|Sn(h) − Cn|
B(npn)

= 0 (3.4)

if
∑∞

n=1 (npn)−1¡∞, and

lim sup
n→∞

|Sn(h) − Cn|
B(npn)

= ∞ (3.5)

if
∑∞

n=1 (npn)−1 = ∞.
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Proof. For any h∈BV [0; 1], there exists a constant C such that |h(x)|6C and
∑n−1

k=1 |h( kn)−h(k+
1=n)|6C for all n¿ 1. Therefore,

|Sn(h) − Cn| =

∣∣∣∣∣
n∑
k=1

h
(
k
n

)
[Xk − (Ak − Ak−1)]

∣∣∣∣∣
=

∣∣∣∣∣
n−1∑
k=1

[
h
(
k
n

)
− h

(
k + 1
n

)]
(Sk − Ak) + h(1)(Sn − An)

∣∣∣∣∣
6 2C max

16k6n
|Sk − Ak |:

Since (3.1) implies lim supn→∞ [(max16k6n |Sk − Ak |)=B(npn)] = 0 due to the fact that B(npn) is a
non-decreasing function of n, (3.4) follows from Lemma 3.3 if

∑∞
n=1 (npn)−1¡∞.

Next, we assume
∑∞

n=1 (npn)−1=∞ and shall prove (3.5). It is easily seen that lim supn→∞ [|Sn(h)−
Cn|=B(npn)] is measurable with respect to the tail-+ 7eld generated by the sequence {Xn; n¿ 1} (see
Chow and Teicher, 1997, p. 64). From Kolmogorov zero-one law, there is a non-random constant
d∈ [0;∞] such that with probability one

lim sup
n→∞

|Sn(h) − Cn|
B(npn)

= d:

So we need to show d = ∞. Suppose at the moment that d¡∞. Then we will obtain some
contradiction.

Since
∑∞

n=1 (npn)−1 =∞, there exists a sequence of non-decreasing positive numbers, {rn}, such
that rn → ∞ and

∞∑
n=1

1
npnrn

= ∞: (3.6)

Write B(x) = x1=L(x), where L(x) is a slowly varying function. By applying Lemma 3.1 with
0¡%¡ 1= we obtain that B(npnrn)=B(npn) → ∞ as n→ ∞. Then with probability one,

lim
n→∞

|Sn(h) − Cn|
B(npnrn)

= 0:

Let {X ′; X ′
n; n¿ 1} be an independent copy of {X; Xn; n¿ 1} and set X s =X −X ′ and X s

n =Xn−X ′
n

for n¿ 1. Then

lim
n→∞

|∑n
k=1 h(

k
n)X

′
k − Cn|

B(npnrn)
= 0:

Further we have

lim
n→∞

|∑n
k=1 h(

k
n)X

s
k |

B(npnrn)
= 0: (3.7)
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Since the random variables X s
n are symmetric, we could show that (3.7) implies

∞∑
n=1

P(|X s|¿B(npnrn))¡∞ (3.8)

in a way similar to the proof of Theorem 2.1 of Chen (2002). Further, by using the following
inequality:

P(|X − m(X )|¿x)6 2P(|X s|¿x) for all x¿ 0

wherem(X ) denotes the median of the random variable X (see Chow and Teicher, 1997, Lemma 10.1.1,
p. 355), we obtain

∞∑
n=1

P(|X − m(X )|¿B(npnrn))¡∞: (3.9)

Since

G(x + |m(X )|)6P(|X − m(X )|¿x)6G(x − |m(X )|)
for any x¿ |m(X )|, and G(x) is regularly varying, it follows from (3.2) that as n→ ∞

P(|X − m(X )|¿B(npnrn)) ∼ G(B(npnrn)) ∼ 1
npnrn

:

So (3.9) implies
∑∞

n=1 (npnrn)−1¡∞, which is in contradiction with (3.6), i.e., d = ∞. This
completes the proof of this lemma.

Proof of Theorem 2.1. Let “i.o.” denote “in7nitely often”. It suQces to show that for every -∈ (0; 1)

P


( |Sn(h) − Cn|

B(
∏r−1

i=0 lgi(n))

)1=lgr+1(n)

¿ e(1+-)= i:o:


= 0

and

P


( |Sn(h) − Cn|

B(
∏r−1

i=0 lgi(n))

)1=lgr+1(n)

¿ e(1−-)= i:o:


= 1;

or equivalently

P

(
|Sn(h) − Cn|¿B

(
r−1∏
i=0

lgi(n)

)
e((1+-)=)lgr+1(n) i:o:

)
= 0 (3.10)

and

P

(
|Sn(h) − Cn|¿B

(
r−1∏
i=0

lgi(n)

)
e((1−-)=)lgr+1(n) i:o:

)
= 1: (3.11)
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Take pn = [lgr(n)]
±-1 ∏r

i=1 lgi(n) for -1 = -=2, that is, npn = [lgr(n)]
1±-1 ∏r−1

i=0 lgi(n): Since
∞∑
n=1

1

[lgr(n)]
1+-1

∏r−1
i=0 lgi(n)

¡∞

and
∞∑
n=1

1

[lgr(n)]
1−-1 ∏r−1

i=0 lgi(n)
= ∞;

it is readily seen from Lemma 3.4 that

P

(
|Sn(h) − Cn|¿B

(
[lgr(n)]

1+-1
r−1∏
i=0

lgi(n)

)
i:o:

)
= 0

and

P

(
|Sn(h) − Cn|¿B

(
[lgr(n)]

1−-1
r−1∏
i=0

lgi(n)

)
i:o:

)
= 1:

Therefore, we only need to prove that for all large n

B

(
[lgr(n)]

1+-1
r−1∏
i=0

lgi(n)

)
¡B

(
r−1∏
i=0

lgi(n)

)
e((1+-)=)lgr+1(n) (3.12)

and

B

(
[lgr(n)]

1−-1
r−1∏
i=0

lgi(n)

)
¿B

(
r−1∏
i=0

lgi(n)

)
e((1−-)=)lgr+1(n): (3.13)

As in the proof of Lemma 3.4 write B(x)= x1=L(x), where L(x) is a slowly varying function. By
applying Lemma 3.1 to function L(x) with d= -1=4 we get for large n

B([lgr(n)]
1+-1

∏r−1
i=0 lgi(n))

B(
∏r−1

i=0 lgi(n))
= [lgr(n)]

(1+-1)= L([lgr(n)]
1+-1

∏r−1
i=0 lgi(n))

L(
∏r−1

i=0 lgi(n))

6 2[lgr(n)]
(1+-1)=[lgr(n)]

d(1+-1)=

6 2[lgr(n)]
(1+1:5-1)=

¡ [lgr(n)]
(1+2-1)=

= e((1+-)=)lgr+1(n);

i.e., (3.12). Likewise, we can show (3.13). This completes the proof.
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Proof of Theorem 2.2. The proof follows from the lines of that of Theorem 2.1. The key is to show
Lemma 3.4 holds for weighted sum

∑n
k=1 an;kXk . In particular, if condition (C1) holds, then∣∣∣∣∣

n∑
k=1

an;kXk − Cn

∣∣∣∣∣6C max
16k6n

|Sk − Ak |

for some constant C¿ 0 (see the proof of Lemma 3.4), and thus (3.4) holds for
∑n

k=1 an;kXk ;
if condition (C2) holds, then limn→∞ [|∑n

k=1 X
s
k |=B(npnrn)] = 0, an analogue of (3.7), yields the

equation (3.8) which leads to some contradiction as in the proof of Lemma 3.4, that is, condition
(C2) guarantees (3.5). The detailed proof is omitted.
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