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. of this identity was proved by Greene and Stanton in 1986. As an
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application, we prove a finite field analogue of Clausen’s theorem
expressing a 3F, as the square of a »Fy. As another application,

ﬁ?l:zsgriimetric functions over finite fields we evaluate an infinite family of 3F;(z) over Fy at z=—1/8. This
Clausen’s theorem extends a result of Ono, who evaluated one of these 3F,(—1/8) in
Gegenbauer functions 1998, using elliptic curves.

Gauss sums Published by Elsevier Inc.

Jacobi sums

1. Introduction and main theorems

Let Fy be a field of q elements, where q is a power of an odd prime p. Throughout this paper,
A,B,C,D,E,R,S,T,M,W, x, v, e, ¢ will denote complex multiplicative characters on F?, extended
to map 0 to 0. The notation &, ¢ will always be reserved for the trivial and quadratic characters, re-
spectively. Write A for the inverse (complex conjugate) of A. For y € g, define the additive character

2mi
V= exp(—p (PP +y" + o+ yq)). (11)
Recall the definitions of the Gauss sum

G(A) =Y A (12)

yelq
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and the Jacobi sum

J(A,B)=Y A(y)B(1—y).

yeF,
Note that
Gey=-1, JE,&=q-2,
and for nontrivial A,
GAGMA)=A(-1)q,  J(A A)=—A(-1).
Gauss and Jacobi sums are related by [5, (1.14)], [2, p. 59]
J(A, B)=G(A)G(B)/G(AB), if AB#¢.
The Gauss sums satisfy the Hasse-Davenport relation [5, (2.18)], [2, p. 59]
A4)G(A)G(Ap) = G(A*)G(9).

For x € Fy, define the hypergeometric »F1 function over Fy by [5, p. 82]

2F1(A’g ‘ x) — 2% S ByBCy - DA - 1)
yelq

and the hypergeometric 3F, function over Fy by [5, p. 83]

D,E

3F2(A’ B,C ‘ x) = 8;—;‘) Z C(y)CE(y —1)B(z)BD(z — 1)A(1 — xy2).

y.zelFq

The “binomial coefficient” over Iy is defined by [5, p. 80]

A B(-1) =
()20

Define the function

q Ax?\ (Ax X
F(A,B;Xx) = —— ( )( xl-=1), xelg,
q—l; X Bx 4 1

and its normalization
F*(A,B;x) = F(A, B;x) + AB(—1)A(x/4)/q.

We will relate the function F* to a ;F; in both Theorems 1.2 and 1.6 below.
Our main result is the following theorem.

(1.7)

(1.8)

(1.9)

(1.10)
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Theorem 1.1. Let AB = C% where C # ¢ and A, B ¢ {e, C}. Then for x # 1,

£ (A B.Co
3020 2 c

X) =—-Cx¢(1—x)/q
C(—4)Co(1 — F*(A c: L)F*(B c: L)
+ -t —nF(ac ) F (B0 ).

The proof of Theorem 1.1 is given in Section 2.

The special case A= B =¢, C =¢ of Theorem 1.1 is due to Greene and Stanton [6]. This case was
used by Ono [8, Theorem 5], [9] to give explicit determinations of

3F2(¢’¢’¢ x)
€

for special values of x. For an infinite family of such determinations, see [3].
We proceed to apply Theorem 1.1 to produce a finite field analogue (Theorem 1.5) of Clausen’s

famous classical identity [1, p. 86]
_s—1 2
X):2F1<C SC 2’ s X) . (111)

Formula (1.11) was utilized in de Branges’ proof of the Bieberbach conjecture. For further applications
of (1.11), consult Askey’s Foreword in [4, pp. Xiv-xv].
In the special case when the character A is a square, we can relate F*(A, C; x) to a 2 F; as follows.

2c—25—1,2s, c— 1
3F
2c—1, ¢

Theorem 1.2. Let R% ¢ {g, C, C2}. Then

R2
F*(R?,C;x) = R@ay IR g <R¢’ R‘x).

J(RC, Rp) > C

Theorem 1.2 is proved in Section 3. Combining Theorems 1.1 and 1.2, we obtain the following
result.

Proposition 1.3. Let C% = R%S2, where C + ¢ and R?, S% ¢ {, C}. Then for x # 1,

C(—1)C¢(1 —x)J (¢, CR?) J(¢,C5?)
J(RC,R$) J(SC,5¢)

R¢,R| x S¢,S| «x
x 2F1 clx=1)F'0 c|x=7)

For x # 1, there is a transformation formula [5, Theorem 4.4(iv)]

R¢, R = RC¢, RC
2F1< ¢C‘Xf1)=6(—1)CR2¢<1—x)2F1( >

F R?,S%.Co
32 C2,C

X) =—C¢(1—x)/q+

X ) (112)

x—1

Using (1.12) in Proposition 1.3, we obtain the following result.
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Proposition 1.4. Let C = RS, where C # ¢ and R?, S? ¢ {e, C}. Then for x # 1,

R%, 82, Co _
3 2( c2.c X>=—C(X)¢(1—X)/q
R2 <2 2
n ](f,Cf )](?,Cf )52(]_X)2F1(s¢,s X ) .
J(RC,R¢)J(SC, S¢) Clx—1

For x # 1, there is another transformation formula [5, Theorem 4.4(iii)]

2F1<S¢’(5_‘ %):5(1—@2&(“‘7”5%). (113)

Using (1.13) in Proposition 1.4, along with (1.5), we obtain the following direct finite field analogue of
Clausen’s identity (1.11).

Theorem 1.5. Let C # ¢ and S% ¢ {g, C, C2}. Then for x # 1,

(252,52 Cco
3F;

C(4)J(SC, SC) €S, S| \?
C2 c 721‘71( ’X) .

J(S,S) C

X> =—C¢(1—x)/q+

Theorem 1.2 relates F*(A, C;x) to a F; when A is a square. We can also relate F*(A, C;x) to a
2F1 when x is a square, as follows.

Theorem 1.6. Let C # ¢, A # ¢, and u ¢ {0, 1}. Then

F*(A, c: u72) _ AC(—1)Cohp(2Q)AW)CAp(1 —u) J(Ap,CA) 2F1< Cop,Cop | 1— u>.

J(@. Ag) CAp| 2

Theorem 1.6 is proved in Section 4, by means of two lemmas relating F* and F; to finite field
analogues of Gegenbauer functions.

With x =1/(1 — u?), use Theorem 1.6 and (4.9) to substitute for the first and second factors F* in
Theorem 1.1, respectively. This yields the following specialization of our main result.

Theorem 1.7. Let C # ¢, A ¢ {g, C, C?}, and u® ¢ {0, 1}. Then

A, AC?, 1
3F2( Cd" ) =—¢(-1)Co(1-u?)/q

c?, 1—u?

+¢>(—1)Ecz(1—u)A(l+u)](A,A7c2) p <E¢,c¢ 1—u)2
J(C$.Co) 2N cAgl 2 )

As an application, we will prove in Section 5 the following evaluation of 3F,(—1/8) for an infinite
family of hypergeometric 3F, functions over Fg.

Theorem 1.8. Suppose that S is a character whose order is not 1, 3, or 4. Then

(22
372\ s2.50| 8
{ —¢(—1)S(—8)/q, if S is not a square,
= (114)

p(-1S®)/q+ LEDIDIES (5(5,D)? + (5, D¢)?),  if S =D,
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Formula (1.14) is a direct finite field analogue of the following evaluation [10] of a classical 3F;:

(1.15)

e (S1-s3s—1| 1\ _2¥7I(s/2°I(+1/2)
3720 25,5412 8/~ 7 (3s/2)?

This classical identity is a consequence of Clausen’s theorem (1.11) and Kummer’s theorem [5, (4.12)].
In Section 5, we show that our identity (1.14) follows analogously from a version of Clausen’s theorem
over Fy (Theorem 1.7) and Kummer's theorem over Fy [5, (4.11)].

We remark that it is not difficult to give separate evaluations of the left side of (1.14) in the
three exceptional cases where S has order 1, 3, or 4. In the case where S has order 2, i.e,, S = ¢,
Theorem 1.8 reduces to Ono’s evaluation of a 3F,(—1/8) in [8, Theorem 6(ii)], [9]. This can be easily
seen from the fact [2, Table 3.2.1] that when D is a quartic character on Fg for a prime g =x*+y?
with x odd, then J(¢, D)? = (x +iy)?.

The left side of (1.14) can also be expressed in the form

,S2%¢, 52 1
S¢(=8)3F; ¢ —¢ o1 ; (1.16)
Sé,S¢ | 8

this can be seen by applying [5, Theorem 4.2(i)] with A=S, B=S5, C=S53, D=S¢, and E = S%. If
we now apply [5, Theorem 4.2(ii)] directly to (1.16), we see that the left side of (1.14) also equals

®,S,S
(

S(=8)p(=1)3F> 52,52

_ g). (117)

Thus we obtain the following theorem:

Theorem 1.9. Suppose that S is a character whose order is not 1, 3, or 4. Then
$.5.S

3F2 ( s2 52 -8

{ —1/q, if S isnotasquare,

S@JGS.s? 5 e 2
1/q+ 25555 (J(S. D) + J(5.D¢)*),  ifS =D>.

(118)

In the case where S = ¢, Theorem 1.9 reduces to Ono’s evaluation of a 3F,(—8) in [8, Theo-
rem 6(i)], [9].

We have also evaluated infinite families of 3F»(—1) and 3F,(1/4) over Fy. These more complicated
evaluations require further machinery and are thus written up in a separate paper. Note that while
Theorem 1.7 covers the argument z = —1/8 (via the choice u = 3), it cannot be applied to cover
z=—1 and z=1/4 over all finite fields. We have tried to extend the result of Ono [8, Theorem 6(vii)]
by evaluating an infinite family of 3F,(1/64), but our attempts have not been successful.

2. Proof of Theorem 1.1

Let AB =C? where C # ¢ and A, B ¢ {e, C}. Let u # 1. The object of this section is to prove

3F2< ’C’Z,C u) =—Cwep(1-u)/q

+6(—4)E¢(1—u)F*(A,c;L)F*(B,c; z ) @2.1)
u—1 u—1

Both sides of (2.1) vanish when u =0, so we will assume that u ¢ {0, 1}.
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The following proof of (2.1) is best read alongside the paper [5], to which we refer numerous
times. We take this opportunity to correct two misprints in [5, p. 94]: the argument 1 is missing on
the far right in [5, (4.25)], and the lower case b should be changed to B in [5, Theorem 4.28].

For a character S on Fy and an element y € Fy, define

1, ifS=e¢,
0, ifS+#e.

1, ify=0,
0, if y+0,

s(y)= : 8(5) ={ (2.2)

Let R, S, T, M, W be characters on Fg, with R # ¢. By [5, Theorem 4.28], for t ¢ {0, 1},

RS TI\_ (=0 pp -0
3F2<T§,T§’t)_ 2 RTCDSS) + = 5= RC-D3(RST)

Lestensa+n+ (S Ystenr( =t
+a (=11 + )+E(RS) (-1 (T

+ST(—1)T(1—t)qu( X )(ET)()( STy >X<(1—t)2)'

X

Multiplying both sides by SMW (—1)M (t)MW (1 — t)/q and the summing over t € Fy, we obtain

R, S, T, M )
1

5(71)4&( TR, TS, W

1—q MW 1-9 MW ——
7 RSTW(—l)( Y )5(5)+ 7 SW(—l)(MR)S(RST)

RTW(=1DMW(2) TW(=1)/ S\ /MWT
* q? * q (RS)( W)

q T x2 Tx RSTy My
T S e

where the 4F3 is defined in [5, Definition 3.10]. Define, for x ¢ {0, 1},

Q(x)=F(A,C;x)F(B, C; x). (2.4)

w=(5) 2 ENE) ()
COEEDCS)
[0 (&) G) (o) ron) o

by [6, (2.8)]. By (2.5) and (2.3) with T=A, R=AC, M=y, S=W = C2y,
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—Cy(=4)  AY(=1) (C*y )\ (AC*Y?
QW =Qi1()+C(- 1)—210( ){ e q (Aw)(czvf)

AC, C?y, A, ¥
+¢(—1)4F3< . By. C?y 1)} (2.6)
where
1%\ (C? 1-/x\ (¢
=36 (3)(E)- )6
By [5, (2.12)-(2.13)], since C # ¢,
Qi(x) = l52(5){—1 +(@- 18O} - 13(_1)5<£) (2.7)
g> \4 g 4) '
By [6, (2.6)],
AC(=1) C2y \ [ AC%y? x\  AC(—1)A(x/4) _
Since Zdj ¥ (x) vanishes, it follows from (2.6)-(2.8) that
Q= _C2< ){ 14(@-15(0) - B( D¢ 2) Ace 1)A(X/4)F(B,c;x>
C(-1)q X AC, c2 E A
() ()
By [5, Theorem 3.15(v)], the degenerate 4F3 in (2.9) equals
AC,C2y, v, A _ v C AC, ¥, A 1 BCy By
(") =) 3F2( i 1) e (ag) (st
+ 9 Vey - 1)5(c¢)2F1<AC_’_A ‘ 1). (2.10)
By
By [5, Theorem 4.9], the rightmost term in (2.10) is
q
8(C
( W) Cy),
so the contribution of this term to the right side of (2.9) is
C(—Dg=(x\@q@—-1) ,= A —A(—=1)C(x/4)
=1 C(Z) 7 AC(-1) <8> — (2.11)

The contribution of the middle term on the right side of (2.10) to the right side of (2.9) is

BC(—1) X\ (BC2y2\ [ CPy\ _BC(— 1)
S 25 (5 ) ey =15 racn ew
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Therefore, by (2.9)-(2.12),

where

X

e (*Vih - _BEDE(x
Q=€ <4>{ 1+H@- 1030} - = C<)

4

- 2D (5 )recon - F50B( 5 racin
q 4 q 4

A(=1) =[x
()

q
Q0 :=C(=1)-=37 ; W

We proceed to evaluate Q»(x). By [5, (2.16)],

cy cy

Thus (2.14) becomes

where

and

2(%),

(3)

(GZ) (ACJ,A
3F2 ——
Cy C,By

()= v e

Q2(%) = Q3(%) + Qa(X),

_ q c
Q3() —C<4)qu< cv

v

Qa(x) =5<%

By [5, Theorem 3.15(ii) and Corollary 3.16(iii)],

_[—x C
Qa(x) = C(T>B(_l) (B)

1_

= q—2c<f) la+ 1 -8} + 6(5> ACD

4

We now evaluate Q3(x). By [5, (4.25)],

Thus

q
Q0 =C) ; (

X
3F2

(¢)

Cov
Cy

1-(—x AC, A
—=C{ — )2F1 -
q 4 AC

4

B,A, v
)1//(X)3F2< ’szg'l)‘

1),

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)
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o= (1) () v ()20
=c<—4>q%1Z<BXX)< )(1)—21&()(“"”)(%) (220

X

by [5, (2.6) and (2.8)]. Replacing v by Cy, we see that

-4\ ¢ Bx\ ( Ax ¢,
Q3(0) = ( )q_lz<x><C2X)X(—l)2F1<E)_<

By [5, Corollary 3.16(ii)],

x). (2.21)

doe| N (CX\, (=D
Therefore
c@
Q30 =~ (q/")zﬂ(B’C’i 1)+Qs<x>, (222)
where
_ B,A,Ch| x
Qs(X)=C(—4)C¢(1—X)3Fz( 54 m) (223)

In view of [5, Theorem 4.9 and (2.12)], the first term on the right of (2.22) equals
A(-1)C(x/4)/q?, (2.24)

since A(—1) = B(—1). By [5, Theorem 3.20(i)], the (nontrivial) numerator parameters B, A in (2.23)
may be interchanged. Thus (2.13) becomes

A(— 1)
Q) = —c2< ){ 1+@-1800)) - z (Z)

_ACE UA( )F(B C; )—BC( Dg ( )F(A C;x)
q 4 q 4

A(=1) = x 1 A(=1) =/ x

A7 (5) e (5 )l a-amen+ 250e()

A(=1) A, B,Co| x

7 C(4>+C( 4)C¢(1fx)3F2< ooc ﬁ) (2.25)

+

For u ¢ {0, 1}, take x =u/(u — 1) in (2.25), so that u =x/(x — 1) and 1 —x=1/(1 — u). Then (2.25)
becomes, in view of definition (1.10),

F , D,
32( CZ,C

u) = C(—4)Co(1 —u)F*(A, c: L)F*(B, c: L) “ewea —u
u—1 u— q

1
-1 4u —4
+C(— 4)C¢(1—u)8(C) p ( ( )—

- c2<4uu_4>)4 (2.26)

The rightmost term in (2.26) vanishes, and so (2.1) is proved.
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3. Proof of Theorem 1.2
Let R? ¢ {e, C, C?}. Our goal is to prove

R2
F*(R?,C;x) = R4y @R g <R¢’ R'x).

J(RC, Rp) > C

By definition (1.9) of F,

e = Ly 2 (0) () 4(3)

X

Then from [5, (4.21)],

2, 4 Rex '\ ( Rx R2x>(¢ -
= L2 () () () (5) moes
-1 2
=( ¢’> R(4)3F2(R¢’R R x), (3.2)

R¢ C,R?
where the last equality follows from [5, Definition 3.10]. Thus by [5, Theorem 3.15(v)], (3.2) becomes

_ c C(—1) = R
(R¢¢) R()F(R?.C:x) = <1§26> S Fy (R"’”g ‘ x) - %Rz(x) (‘%’f) . (33)
By the definition (1.10) of F*,
_ o C(-1) =
<R¢¢> R@F(R?, C;x) = (R¢¢) R@4)F*(R?,C;x) — R(4) <R¢¢) TR2(><). (34)

Applying [5, (2.6)] and then [5, (2.16)] with A= B =R, we have

li) (%)

Thus, equating the right sides of (3.3) and (3.4), we obtain

_ RC R¢, R
(R¢¢)R(4)F*(R2,C;x)= (R2E) 2F1< ¢ c ’x) (3.5)

With the aid of (1.4), we see that (3.5) yields the desired result (3.1).
4. Proof of Theorem 1.6

For u € Fy, define the function

Py (u) = 1 > ROS(1-2ut +1%). (4.1)
telfg

This is a finite field analogue of the classical Gegenbauer function [7, (5.12.7)]. For the proof of The-
orem 1.6, we will need Lemmas 4.1 and 4.2 below, which relate Pﬁ(u) to functions F; and F*,
respectively.
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Lemma4.1. Let u # 1 and R ¢ {&, S¢}. Then

s e JRS) R.RS?|1-u
P =ocns@lon (M 1), (42)
Proof. Let u =1 —2v. Then
Py = - D> ROS((1 -0 +4vt)
t#1
1 1 = = _< 4vt )
=-5@v)+ - ROS*A-05(1+—= ).
S thj ®OS*1 -0 a0

Applying the finite field analogue [5, (2.10)] of the binomial theorem with A =S, we obtain

1~ 1 — _
PR(u) = S@+ > (SX ) X(—4v) Y Rx(0S*x*(1 -1
t

q—1 7\ X
~ Y5an ¢ LZ(SX)X(—M)](EX,EZ)—( ). (4.3)
q q-15-\ X

Using [5, (2.16)] with A =S¢X and B = RS¢, we have

_ . 52)?2
222\ _ _
J(Rx.5°X%%) =qRx( 1)( Ry )

597\ (5T «
=qu(—1>(R‘§¢) <£2>(R))_E>57<(4)- (44)

Combining (4.3)-(4.4) and using [5, (2.6)-(2.8)], we have
sy 1z ¢ \ < q Sx\[(RS*x\ (Rx
PR(u)—ES<4v)+(RS¢> S<4>R¢(—1)qj§< ) son ) sy Jx®

S,R,RS?

1- o\ <
=55(4V)+<Rs¢> 5(4)R¢(—1)3F2( 5,56

Thus by [5, Theorem 3.15(iv)],
Py (u) = 15(4\/) (.2 (R SARp(—1),F R.Rs? v
R =7 RS s 2 se

LT ® _1<RS>
JRso 1)5(4")(Rs¢> 5 )

(Rq;i’) - (1%) =RS$(~1) <R¢S>,

the first and last terms on the right cancel and the result follows. O

Since
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Lemma 4.2. Let u # 0. Then
P} (u) = RQu)S(-1)F*(R, RS; u™?). (4.5)

Proof. Applying [5, (2.10)] (again with A = S) to the right side of
1 _
P3(u) = p > R®S(1—t@u—1),
t
we have
s 1o 1 Sx R
PRuw)=-RQu) +——Y_ Y Rx®xu-—o. (4.6)
q q—1 X X P
The inner sum in (4.6) equals
Rx?Qu)J(Rx, x) = qRu)x (—4u?) ( XX) (4.7)
Combining (4.6)-(4.7) and replacing y by x, we obtain
1= = q SX X —1
Sy & _
o= 5, (%) ()2
Then from [5, (2.7)-(2.8)],

1- _ Ryx2 1
P,ﬁ(u):aR(2u)+R(2u)5(—1)q%]Z(§);)( ))(( )X<W)’

X

Finally replacing x by Rx, we obtain

o1 PN Rx*\ ( Rx 1
P3(u) = qR(Zu)—I—R(Zu)S( Dq——l Z( Rx ) (ﬁgx)x<4u2>

X
=RQu)S(-1)F*(R,RS;u™?),

by [5, (2.6)] and Definition 1.10. O

We proceed to apply Lemmas 4.1 and 4.2 to prove Theorem 1.6. Suppose that C # ¢, A # ¢, and
u ¢ {0, 1}. By (4.2) and (4.5),

o ) )
F*(A,c;zrz)z{f‘C @AC( 1)A<u>J(CA,A¢)} (A,AC

J(#. Ad) CA¢

1—u

First suppose that u = —1. Then Theorem 1.6 follows readily from (4.8) and [5, Theorem 4.9]. Thus
assume that u? ¢ {0, 1}.
Since u # —1, we can apply [5, Theorem 4.4(iv)] to the ;F; in (4.8) to obtain

FH(A Cu?) = AC?(QAC(=1D)AW)J(CA, Ap) CM(—l—u) p(CO.Co 1—u> 49)
R 1(¢. Ad) 2 )7\ cag| 2 )
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Again since u # —1, we can apply [5, Theorem 4.4(i)] to the F; in (4.9) to obtain

F*(A,Ciu2) = AC?(QAC(=1DAW)J(CA, Ag) CM(_l_u)&p(—l) c (E¢,c¢ l—l—u)
T J(@. Ad) 2 N cAp| 2 )

Theorem 1.6 now follows upon replacing u by —u.
5. Proof of Theorem 1.8

Let S be a character whose order is not 1, 3, or 4. Then the hypotheses of Theorem 1.7 are satisfied
with A=S, C =S¢, and u = 3. With these choices, Theorem 1.7 yields

—1)S(=2)J(5, s3 5. 2
d(=1)5(=2) J( )2F1 1) (51)
J(S,S) S
First suppose that S is not a square. Then by [5, (4.11)], the »F; in (5.1) vanishes, so (1.14) follows
in this case.
Finally, suppose that S = D? for some character D. Then by [5, (4.11)], the »F; in (5.1) equals

§.83.5| 1\ _
3F2( 52,S¢‘_§>__¢(_1)5(_8)/Q+

S(=1)(J(S,D) + (S, D¢)) /.

S0 its square equals

(J(S.D)* + J(S, D$)*) Ja* +2](S. D) J (S, D¢)/q*.

It remains to show that

20(=1)5®)/q=

(=S J(S, $?) (21(5, D)J (s, D¢)>
J(S,9) g ’

or equivalently,
aS@#J(S,8)=](5,5)J(S.D)J(S,D¢), S=D>
This identity follows easily from (1.4)-(1.5).
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