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1. Introduction and main theorems

Let Fq be a field of q elements, where q is a power of an odd prime p. Throughout this paper,
A, B, C, D, E, R, S, T , M, W ,χ,ψ,ε,φ will denote complex multiplicative characters on F

∗
q , extended

to map 0 to 0. The notation ε,φ will always be reserved for the trivial and quadratic characters, re-
spectively. Write A for the inverse (complex conjugate) of A. For y ∈ Fq , define the additive character

ζ y := exp

(
2π i

p

(
yp + yp2 + · · · + yq)). (1.1)

Recall the definitions of the Gauss sum

G(A) =
∑
y∈Fq

A(y)ζ y (1.2)
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and the Jacobi sum

J (A, B) =
∑
y∈Fq

A(y)B(1 − y). (1.3)

Note that

G(ε) = −1, J (ε, ε) = q − 2,

and for nontrivial A,

G(A)G(A) = A(−1)q, J (A, A) = −A(−1).

Gauss and Jacobi sums are related by [5, (1.14)], [2, p. 59]

J (A, B) = G(A)G(B)/G(AB), if AB �= ε. (1.4)

The Gauss sums satisfy the Hasse–Davenport relation [5, (2.18)], [2, p. 59]

A(4)G(A)G(Aφ) = G
(

A2)G(φ). (1.5)

For x ∈ Fq , define the hypergeometric 2 F1 function over Fq by [5, p. 82]

2 F1

(
A, B

C

∣∣∣∣ x

)
= ε(x)

q

∑
y∈Fq

B(y)BC(y − 1)A(1 − xy) (1.6)

and the hypergeometric 3 F2 function over Fq by [5, p. 83]

3 F2

(
A, B, C

D, E

∣∣∣∣ x

)
= ε(x)

q2

∑
y,z∈Fq

C(y)C E(y − 1)B(z)B D(z − 1)A(1 − xyz). (1.7)

The “binomial coefficient” over Fq is defined by [5, p. 80]

(
A
B

)
= B(−1)

q
J (A, B). (1.8)

Define the function

F (A, B; x) = q

q − 1

∑
χ

(
Aχ2

χ

)(
Aχ

Bχ

)
χ

(
x

4

)
, x ∈ Fq, (1.9)

and its normalization

F ∗(A, B; x) = F (A, B; x) + AB(−1)A(x/4)/q. (1.10)

We will relate the function F ∗ to a 2 F1 in both Theorems 1.2 and 1.6 below.
Our main result is the following theorem.
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Theorem 1.1. Let AB = C2 where C �= φ and A, B /∈ {ε, C}. Then for x �= 1,

3 F2

(
A, B, Cφ

C2, C

∣∣∣∣ x

)
= −C(x)φ(1 − x)/q

+ C(−4)Cφ(1 − x)F ∗
(

A, C; x

x − 1

)
F ∗

(
B, C; x

x − 1

)
.

The proof of Theorem 1.1 is given in Section 2.

The special case A = B = φ, C = ε of Theorem 1.1 is due to Greene and Stanton [6]. This case was
used by Ono [8, Theorem 5], [9] to give explicit determinations of

3 F2

(
φ,φ,φ

ε, ε

∣∣∣∣ x

)

for special values of x. For an infinite family of such determinations, see [3].
We proceed to apply Theorem 1.1 to produce a finite field analogue (Theorem 1.5) of Clausen’s

famous classical identity [1, p. 86]

3 F2

(
2c − 2s − 1, 2s, c − 1

2
2c − 1, c

∣∣∣∣ x

)
= 2 F1

(
c − s − 1

2 , s

c

∣∣∣∣ x

)2

. (1.11)

Formula (1.11) was utilized in de Branges’ proof of the Bieberbach conjecture. For further applications
of (1.11), consult Askey’s Foreword in [4, pp. xiv–xv].

In the special case when the character A is a square, we can relate F ∗(A, C; x) to a 2 F1 as follows.

Theorem 1.2. Let R2 /∈ {ε, C, C2}. Then

F ∗(R2, C; x
) = R(4)

J (φ, C R2)

J (RC, Rφ)
2 F1

(
Rφ, R

C

∣∣∣∣ x

)
.

Theorem 1.2 is proved in Section 3. Combining Theorems 1.1 and 1.2, we obtain the following
result.

Proposition 1.3. Let C2 = R2 S2 , where C �= φ and R2, S2 /∈ {ε, C}. Then for x �= 1,

3 F2

(
R2, S2, Cφ

C2, C

∣∣∣∣ x

)
= −C(x)φ(1 − x)/q + C(−1)Cφ(1 − x) J (φ, C R2) J (φ, C S2)

J (RC, Rφ) J (SC, Sφ)

× 2 F1

(
Rφ, R

C

∣∣∣∣ x

x − 1

)
2 F1

(
Sφ, S

C

∣∣∣∣ x

x − 1

)
.

For x �= 1, there is a transformation formula [5, Theorem 4.4(iv)]

2 F1

(
Rφ, R

C

∣∣∣∣ x

x − 1

)
= C(−1)C R2φ(1 − x) 2 F1

(
RCφ, RC

C

∣∣∣∣ x

x − 1

)
. (1.12)

Using (1.12) in Proposition 1.3, we obtain the following result.
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Proposition 1.4. Let C = R S, where C �= φ and R2, S2 /∈ {ε, C}. Then for x �= 1,

3 F2

(
R2, S2, Cφ

C2, C

∣∣∣∣ x

)
= −C(x)φ(1 − x)/q

+ J (φ, C R2) J (φ, C S2)

J (RC, Rφ) J (SC, Sφ)
S2(1 − x) 2 F1

(
Sφ, S

C

∣∣∣∣ x

x − 1

)2

.

For x �= 1, there is another transformation formula [5, Theorem 4.4(iii)]

2 F1

(
Sφ, S

C

∣∣∣∣ x

x − 1

)
= S(1 − x) 2 F1

(
C Sφ, S

C

∣∣∣∣ x

)
. (1.13)

Using (1.13) in Proposition 1.4, along with (1.5), we obtain the following direct finite field analogue of
Clausen’s identity (1.11).

Theorem 1.5. Let C �= φ and S2 /∈ {ε, C, C2}. Then for x �= 1,

3 F2

(
C2 S2, S2, Cφ

C2, C

∣∣∣∣ x

)
= −C(x)φ(1 − x)/q + C(4) J (SC, SC)

J (S, S)
2 F1

(
C Sφ, S

C

∣∣∣∣ x

)2

.

Theorem 1.2 relates F ∗(A, C; x) to a 2 F1 when A is a square. We can also relate F ∗(A, C; x) to a
2 F1 when x is a square, as follows.

Theorem 1.6. Let C �= φ , A �= ε, and u /∈ {0,1}. Then

F ∗(A, C; u−2) = AC(−1)Cφ(2)A(u)C Aφ(1 − u) J (Aφ, C A)

J (φ, Aφ)
2 F1

(
Cφ, Cφ

C Aφ

∣∣∣∣ 1 − u

2

)
.

Theorem 1.6 is proved in Section 4, by means of two lemmas relating F ∗ and 2 F1 to finite field
analogues of Gegenbauer functions.

With x = 1/(1 − u2), use Theorem 1.6 and (4.9) to substitute for the first and second factors F ∗ in
Theorem 1.1, respectively. This yields the following specialization of our main result.

Theorem 1.7. Let C �= φ , A /∈ {ε, C, C2}, and u2 /∈ {0,1}. Then

3 F2

(
A, AC2, Cφ

C2, C

∣∣∣∣ 1

1 − u2

)
= −φ(−1)Cφ

(
1 − u2)/q

+ φ(−1)AC2(1 − u)A(1 + u) J (A, AC2)

J (Cφ, Cφ)
2 F1

(
Cφ, Cφ

C Aφ

∣∣∣∣ 1 − u

2

)2

.

As an application, we will prove in Section 5 the following evaluation of 3 F2(−1/8) for an infinite
family of hypergeometric 3 F2 functions over Fq .

Theorem 1.8. Suppose that S is a character whose order is not 1, 3, or 4. Then

3 F2

(
S, S3, S

S2, Sφ

∣∣∣∣ −1

8

)

=
{−φ(−1)S(−8)/q, if S is not a square,

φ(−1)S(8)/q + φ(−1)S(2) J (S,S3)

q2 J (S,S)
( J (S, D)2 + J (S, Dφ)2), if S = D2.

(1.14)
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Formula (1.14) is a direct finite field analogue of the following evaluation [10] of a classical 3 F2:

3 F2

(
s,1 − s,3s − 1

2s, s + 1/2

∣∣∣∣ −1

8

)
= 23s−3Γ (s/2)2Γ (s + 1/2)2

πΓ (3s/2)2
. (1.15)

This classical identity is a consequence of Clausen’s theorem (1.11) and Kummer’s theorem [5, (4.12)].
In Section 5, we show that our identity (1.14) follows analogously from a version of Clausen’s theorem
over Fq (Theorem 1.7) and Kummer’s theorem over Fq [5, (4.11)].

We remark that it is not difficult to give separate evaluations of the left side of (1.14) in the
three exceptional cases where S has order 1, 3, or 4. In the case where S has order 2, i.e., S = φ,
Theorem 1.8 reduces to Ono’s evaluation of a 3 F2(−1/8) in [8, Theorem 6(ii)], [9]. This can be easily
seen from the fact [2, Table 3.2.1] that when D is a quartic character on Fq for a prime q = x2 + y2

with x odd, then J (φ, D)2 = (x + iy)2.

The left side of (1.14) can also be expressed in the form

Sφ(−8) 3 F2

(
φ, S2φ, S2φ

Sφ, Sφ

∣∣∣∣ −1

8

)
; (1.16)

this can be seen by applying [5, Theorem 4.2(i)] with A = S , B = S , C = S3, D = Sφ, and E = S2. If
we now apply [5, Theorem 4.2(ii)] directly to (1.16), we see that the left side of (1.14) also equals

S(−8)φ(−1) 3 F2
( φ, S, S

S2, S2

∣∣∣∣ − 8

)
. (1.17)

Thus we obtain the following theorem:

Theorem 1.9. Suppose that S is a character whose order is not 1, 3, or 4. Then

3 F2

(
φ, S, S

S2, S2

∣∣∣∣ −8

)

=
{−1/q, if S is not a square,

1/q + S(4) J (S,S3)

q2 J (S,S)
( J (S, D)2 + J (S, Dφ)2), if S = D2.

(1.18)

In the case where S = φ, Theorem 1.9 reduces to Ono’s evaluation of a 3 F2(−8) in [8, Theo-
rem 6(i)], [9].

We have also evaluated infinite families of 3 F2(−1) and 3 F2(1/4) over Fq . These more complicated
evaluations require further machinery and are thus written up in a separate paper. Note that while
Theorem 1.7 covers the argument z = −1/8 (via the choice u = 3), it cannot be applied to cover
z = −1 and z = 1/4 over all finite fields. We have tried to extend the result of Ono [8, Theorem 6(vii)]
by evaluating an infinite family of 3 F2(1/64), but our attempts have not been successful.

2. Proof of Theorem 1.1

Let AB = C2 where C �= φ and A, B /∈ {ε, C}. Let u �= 1. The object of this section is to prove

3 F2

(
A, B, Cφ

C2, C

∣∣∣∣ u

)
= −C(u)φ(1 − u)/q

+ C(−4)Cφ(1 − u)F ∗
(

A, C; u

u − 1

)
F ∗

(
B, C; u

u − 1

)
. (2.1)

Both sides of (2.1) vanish when u = 0, so we will assume that u /∈ {0,1}.
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The following proof of (2.1) is best read alongside the paper [5], to which we refer numerous
times. We take this opportunity to correct two misprints in [5, p. 94]: the argument 1 is missing on
the far right in [5, (4.25)], and the lower case b should be changed to B in [5, Theorem 4.28].

For a character S on Fq and an element y ∈ Fq , define

δ(y) =
{

1, if y = 0,

0, if y �= 0,
δ(S) =

{
1, if S = ε,

0, if S �= ε.
(2.2)

Let R, S, T , M, W be characters on Fq , with R �= ε. By [5, Theorem 4.28], for t /∈ {0,1},

3 F2

(
R, S, T

T R, T S

∣∣∣∣ t

)
= (1 − q)

q2
RT (−1)δ(S) + (1 − q)

q2
R(−t)δ(R ST )

+ 1

q
R ST (−1)δ(1 + t) + 1

q

(
S

R S

)
ST (−1)T

(
t − 1

t

)

+ ST (−1)T (1 − t)
q

q − 1

∑
χ

(
Tχ2

χ

)(
Tχ

RTχ

)(
R STχ

STχ

)
χ

( −t

(1 − t)2

)
.

Multiplying both sides by SMW (−1)M(t)MW (1 − t)/q and the summing over t ∈ Fq , we obtain

S(−1) 4 F3

(
R, S, T , M

T R, T S, W

∣∣∣∣ 1

)

= (1 − q)

q2
R ST W (−1)

(
MW

M

)
δ(S) + (1 − q)

q2
SW (−1)

(
MW
M R

)
δ(R ST )

+ RT W (−1)MW (2)

q2
+ T W (−1)

q

(
S

R S

)(
MW T

W

)

+ q

q − 1

∑
χ

(
Tχ2

χ

)(
Tχ

RTχ

)(
R STχ
STχ

)(
Mχ

MW Tχ2

)
χ(−1), (2.3)

where the 4 F3 is defined in [5, Definition 3.10]. Define, for x /∈ {0,1},

Q (x) = F (A, C; x)F (B, C; x). (2.4)

Then,

Q (x) =
(

q

q − 1

)2 ∑
χ,ψ

(
Aχ2

χ

)(
Aχ
Cχ

)(
Bψ

Cψ

)(
Bψ2

ψ

)
χψ

(
x

4

)

=
(

q

q − 1

)2 ∑
ψ

ψ

(
x

4

)∑
χ

(
Aχ2

χ

)(
Aχ
Cχ

)(
Bψχ
Cψχ

)(
Bψ2χ2

ψχ

)

= C(−1)
q

q − 1

∑
ψ

ψ

(
− x

4

){
q

q − 1

∑
χ

(
Aχ2

χ

)(
Aχ
Cχ

)(
Cψχ

Bψχ

)(
ψχ

Bψ2χ2

)
χ(−1)

}
(2.5)

by [6, (2.8)]. By (2.5) and (2.3) with T = A, R = AC, M = ψ, S = W = C2ψ,
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Q (x) = Q 1(x) + C(−1)
q

q − 1

∑
ψ

ψ

(
− x

4

){−Cψ(−4)

q2
− Aψ(−1)

q

(
C2ψ

ACψ

)(
AC2ψ2

C2ψ

)

+ ψ(−1) 4 F3

(
AC, C2ψ, A, ψ

C, Bψ, C2ψ

∣∣∣∣ 1

)}
, (2.6)

where

Q 1(x) = 1

q
C2

(
x

4

)(
C2

C2

)
+ 1

q
C

(
x

4

)(
ε
B

)
.

By [5, (2.12)–(2.13)], since C �= φ,

Q 1(x) = 1

q2
C2

(
x

4

){−1 + (q − 1)δ(C)
} − 1

q2
B(−1)C

(
x

4

)
. (2.7)

By [6, (2.6)],

AC(−1)

q − 1

∑
ψ

(
C2ψ

ACψ

)(
AC2ψ2

C2ψ

)
ψ

(
x

4

)
= AC(−1)A(x/4)

q
F (B, C; x). (2.8)

Since
∑

ψ ψ(x) vanishes, it follows from (2.6)–(2.8) that

Q (x) = 1

q2
C2

(
x

4

){−1 + (q − 1)δ(C)
} − B(−1)

q2
C

(
x

4

)
− AC(−1)A(x/4)

q
F (B, C; x)

+ C(−1)q

q − 1

∑
ψ

ψ

(
x

4

)
4 F3

(
AC, C2ψ,ψ, A

C, C2ψ, Bψ

∣∣∣∣ 1

)
. (2.9)

By [5, Theorem 3.15(v)], the degenerate 4 F3 in (2.9) equals

4 F3

(
AC, C2ψ,ψ, A

C, C2ψ, Bψ

∣∣∣∣ 1

)
=

(
ψC

Cψ

)
3 F2

(
AC,ψ, A

C, Bψ

∣∣∣∣ 1

)
− 1

q
Cψ(−1)

(
BCψ

C2ψ

)(
Bψ

BC2ψ2

)

+ (q − 1)

q2
Cψ(−1)δ(Cψ) 2 F1

(
AC, A

Bψ

∣∣∣∣ 1

)
. (2.10)

By [5, Theorem 4.9], the rightmost term in (2.10) is

q − 1

q2
Aψ(−1)

(
A

Cψ

)
δ(Cψ),

so the contribution of this term to the right side of (2.9) is

C(−1)q

q − 1
C

(
x

4

)
(q − 1)

q2
AC(−1)

(
A
ε

)
= −A(−1)C(x/4)

q2
. (2.11)

The contribution of the middle term on the right side of (2.10) to the right side of (2.9) is

− BC(−1)

q − 1

∑
ψ

ψ

(
x

4

)(
BC2ψ2

Bψ

)(
C2ψ

BCψ

)
= − BC(−1)

q
B

(
x

4

)
F (A, C; x). (2.12)
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Therefore, by (2.9)–(2.12),

Q (x) = 1

q2
C2

(
x

4

){−1 + (q − 1)δ(C)
} − B(−1)

q2
C

(
x

4

)

− AC(−1)

q
A

(
x

4

)
F (B, C; x) − BC(−1)

q
B

(
x

4

)
F (A, C; x)

− A(−1)

q2
C

(
x

4

)
+ Q 2(x), (2.13)

where

Q 2(x) := C(−1)
q

q − 1

∑
ψ

ψ

(
x

4

)(
Cψ

Cψ

)
3 F2

(
AC,ψ, A

C, Bψ

∣∣∣∣ 1

)
. (2.14)

We proceed to evaluate Q 2(x). By [5, (2.16)],

(
Cψ

Cψ

)
=

(
Cφψ

Cψ

)
Cψ(−4) + q − 1

q
δ(Cψ).

Thus (2.14) becomes

Q 2(x) = Q 3(x) + Q 4(x), (2.15)

where

Q 3(x) = C(4)
q

q − 1

∑
ψ

(
Cφψ

Cψ

)
ψ(−x) 3 F2

(
AC,ψ, A

C, Bψ

∣∣∣∣ 1

)
(2.16)

and

Q 4(x) = C

(−x

4

)
3 F2

(
AC, C, A

C, AC

∣∣∣∣ 1

)
. (2.17)

By [5, Theorem 3.15(ii) and Corollary 3.16(iii)],

Q 4(x) = C

(−x

4

)
B(−1)

(
C
B

)(
B
C

)
− 1

q
C

(−x

4

)
2 F1

(
AC, A

AC

∣∣∣∣ 1

)

= 1

q2
C

(
x

4

){
q + (1 − q)δ(C)

} + C

(
x

4

)
A(−1)

q2
. (2.18)

We now evaluate Q 3(x). By [5, (4.25)],

Q 3(x) = C(4)
q

q − 1

∑
ψ

(
Cφψ

Cψ

)
ψ(x) 3 F2

(
B, A,ψ

C2, C

∣∣∣∣ 1

)
. (2.19)

Thus
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Q 3(x) = C(4)
q

q − 1

∑
χ

(
Bχ
χ

)(
Aχ

C2χ

)
q

q − 1

∑
ψ

ψ(x)

(
Cφψ

Cψ

)(
χψ

χC

)

= C(−4)
q

q − 1

∑
χ

(
Bχ
χ

)(
Aχ

C2χ

)
χ(−1)

q

q − 1

∑
ψ

ψ(x)

(
Cφψ

Cψ

)(
Cψ

χψ

)
(2.20)

by [5, (2.6) and (2.8)]. Replacing ψ by Cψ , we see that

Q 3(x) = C

(−4

x

)
q

q − 1

∑
χ

(
Bχ
χ

)(
Aχ

C2χ

)
χ(−1) 2 F1

(
φ,ε

Cχ

∣∣∣∣ x

)
. (2.21)

By [5, Corollary 3.16(ii)],

2 F1

(
φ,ε

Cχ

∣∣∣∣ x

)
=

(
Cχ

φCχ

)
φ(−1)Cχ(x)Cχφ(1 − x) − Cχ(−1)

q
.

Therefore

Q 3(x) = − C(4/x)

q
2 F1

(
B, A

C2

∣∣∣∣ 1

)
+ Q 5(x), (2.22)

where

Q 5(x) = C(−4)Cφ(1 − x) 3 F2

(
B, A, Cφ

C2, C

∣∣∣∣ x

x − 1

)
. (2.23)

In view of [5, Theorem 4.9 and (2.12)], the first term on the right of (2.22) equals

A(−1)C(x/4)/q2, (2.24)

since A(−1) = B(−1). By [5, Theorem 3.20(i)], the (nontrivial) numerator parameters B, A in (2.23)
may be interchanged. Thus (2.13) becomes

Q (x) = 1

q2
C2

(
x

4

){−1 + (q − 1)δ(C)
} − A(−1)

q2
C

(
x

4

)

− AC(−1)

q
A

(
x

4

)
F (B, C; x) − BC(−1)

q
B

(
x

4

)
F (A, C; x)

− A(−1)

q2
C

(
x

4

)
+ 1

q2
C

(
x

4

){
q + (1 − q)δ(C)

} + A(−1)

q2
C

(
x

4

)

+ A(−1)

q2
C

(
x

4

)
+ C(−4)Cφ(1 − x) 3 F2

(
A, B, Cφ

C2, C

∣∣∣∣ x

x − 1

)
. (2.25)

For u /∈ {0,1}, take x = u/(u − 1) in (2.25), so that u = x/(x − 1) and 1 − x = 1/(1 − u). Then (2.25)
becomes, in view of definition (1.10),

3 F2

(
A, B, Cφ

C2, C

∣∣∣∣ u

)
= C(−4)Cφ(1 − u)F ∗

(
A, C; u

u − 1

)
F ∗

(
B, C; u

u − 1

)
− 1

q
C(u)φ(1 − u)

+ C(−4)Cφ(1 − u)δ(C)
(q − 1)

q2

(
C

(
4u − 4

u

)
− C2

(
4u − 4

u

))
. (2.26)

The rightmost term in (2.26) vanishes, and so (2.1) is proved.
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3. Proof of Theorem 1.2

Let R2 /∈ {ε, C, C2}. Our goal is to prove

F ∗(R2, C; x
) = R(4)

J (φ, C R2)

J (RC, Rφ)
2 F1

(
Rφ, R

C

∣∣∣∣ x

)
. (3.1)

By definition (1.9) of F ,

F
(

R2, C; x
) = q

q − 1

∑
χ

(
R2χ2

χ

)(
R2χ

Cχ

)
χ

(
x

4

)
.

Then from [5, (4.21)],

F
(

R2, C; x
) = q

q − 1

∑
χ

(
Rφχ
χ

)(
Rχ

R2χ

)(
R2χ

Cχ

)(
φ

Rφ

)−1

R(4)χ(x)

=
(

φ

Rφ

)−1

R(4) 3 F2

(
Rφ, R2, R

C, R2

∣∣∣∣ x

)
, (3.2)

where the last equality follows from [5, Definition 3.10]. Thus by [5, Theorem 3.15(v)], (3.2) becomes

(
φ

Rφ

)
R(4)F

(
R2, C; x

) =
(

RC
R2C

)
2 F1

(
Rφ, R

C

∣∣∣∣ x

)
− C(−1)

q
R2(x)

(
φR
R2

)
. (3.3)

By the definition (1.10) of F ∗ ,

(
φ

Rφ

)
R(4)F

(
R2, C; x

) =
(

φ

Rφ

)
R(4)F ∗(R2, C; x

) − R(4)

(
φ

Rφ

)
C(−1)

q
R2(x). (3.4)

Applying [5, (2.6)] and then [5, (2.16)] with A = B = R , we have

R(4)

(
φ

Rφ

)
=

(
φR

R2

)
.

Thus, equating the right sides of (3.3) and (3.4), we obtain

(
φ

Rφ

)
R(4)F ∗(R2, C; x

) =
(

RC

R2C

)
2 F1

(
Rφ, R

C

∣∣∣∣ x

)
. (3.5)

With the aid of (1.4), we see that (3.5) yields the desired result (3.1).

4. Proof of Theorem 1.6

For u ∈ Fq , define the function

P S
R(u) = 1

q

∑
t∈Fq

R(t)S
(
1 − 2ut + t2). (4.1)

This is a finite field analogue of the classical Gegenbauer function [7, (5.12.7)]. For the proof of The-
orem 1.6, we will need Lemmas 4.1 and 4.2 below, which relate P S

R(u) to functions 2 F1 and F ∗ ,
respectively.
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Lemma 4.1. Let u �= 1 and R /∈ {ε, Sφ}. Then

P S
R(u) = φ(−1)S(4)

J (R, S)

J (φ, R S)
2 F1

(
R, R S2

Sφ

∣∣∣∣ 1 − u

2

)
. (4.2)

Proof. Let u = 1 − 2v . Then

P S
R(u) = 1

q

∑
t �=1

R(t)S
(
(1 − t)2 + 4vt

)

= 1

q
S(4v) + 1

q

∑
t

R(t)S2(1 − t)S

(
1 + 4vt

(1 − t)2

)
.

Applying the finite field analogue [5, (2.10)] of the binomial theorem with A = S, we obtain

P S
R(u) = 1

q
S(4v) + 1

q − 1

∑
χ

(
Sχ
χ

)
χ(−4v)

∑
t

Rχ(t)S2χ2(1 − t)

= 1

q
S(4v) + 1

q − 1

∑
χ

(
Sχ
χ

)
χ(−4v) J

(
Rχ, S2χ2). (4.3)

Using [5, (2.16)] with A = Sφχ and B = R Sφ, we have

J
(

Rχ, S2χ2) = qRχ(−1)

(
S2χ2

Rχ

)

= qRχ(−1)

(
φ

R Sφ

)−1 (
Sφχ

R Sφ

)(
Sχ

Rχ

)
Sχ(4). (4.4)

Combining (4.3)–(4.4) and using [5, (2.6)–(2.8)], we have

P S
R(u) = 1

q
S(4v) +

(
φ

R Sφ

)−1

S(4)Rφ(−1)
q

q − 1

∑
χ

(
Sχ
χ

)(
R S2χ
Sφχ

)(
Rχ
Sχ

)
χ(v)

= 1

q
S(4v) +

(
φ

R Sφ

)−1

S(4)Rφ(−1) 3 F2

(
S, R, R S2

S, Sφ

∣∣∣∣ v

)
.

Thus by [5, Theorem 3.15(iv)],

P S
R(u) = 1

q
S(4v) +

(
φ

R Sφ

)−1 (
R
S

)
S(4)Rφ(−1) 2 F1

(
R, R S2

Sφ

∣∣∣∣ v

)

− 1

q
R Sφ(−1)S(4v)

(
φ

R Sφ

)−1 (
R S
φ

)
.

Since (
φ

R Sφ

)
=

(
φ

R S

)
= R Sφ(−1)

(
R S
φ

)
,

the first and last terms on the right cancel and the result follows. �
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Lemma 4.2. Let u �= 0. Then

P S
R(u) = R(2u)S(−1)F ∗(R, R S; u−2). (4.5)

Proof. Applying [5, (2.10)] (again with A = S) to the right side of

P S
R(u) = 1

q

∑
t

R(t)S
(
1 − t(2u − t)

)
,

we have

P S
R(u) = 1

q
R(2u) + 1

q − 1

∑
χ

(
Sχ
χ

)∑
t

Rχ(t)χ(2u − t). (4.6)

The inner sum in (4.6) equals

Rχ2(2u) J (Rχ,χ) = qR(2u)χ
(−4u2)(

Rχ

χ

)
. (4.7)

Combining (4.6)–(4.7) and replacing χ by χ , we obtain

P S
R(u) = 1

q
R(2u) + R(2u)

q

q − 1

∑
χ

(
Sχ

χ

)(
Rχ

χ

)
χ

( −1

4u2

)
.

Then from [5, (2.7)–(2.8)],

P S
R(u) = 1

q
R(2u) + R(2u)S(−1)

q

q − 1

∑
χ

(
χ

Sχ

)(
Rχ2

χ

)
χ

(
1

4u2

)
.

Finally replacing χ by Rχ , we obtain

P S
R(u) = 1

q
R(2u) + R(2u)S(−1)

q

q − 1

∑
χ

(
Rχ2

Rχ

)(
Rχ

R Sχ

)
χ

(
1

4u2

)

= R(2u)S(−1)F ∗(R, R S; u−2),
by [5, (2.6)] and Definition 1.10. �

We proceed to apply Lemmas 4.1 and 4.2 to prove Theorem 1.6. Suppose that C �= φ, A �= ε, and
u /∈ {0,1}. By (4.2) and (4.5),

F ∗(A, C; u−2) =
{

AC2(2)AC(−1)A(u) J(C A, Aφ)

J (φ, Aφ)

}
2 F1

(
A, AC2

C Aφ

∣∣∣∣ 1 − u

2

)
. (4.8)

First suppose that u = −1. Then Theorem 1.6 follows readily from (4.8) and [5, Theorem 4.9]. Thus
assume that u2 /∈ {0,1}.

Since u �= −1, we can apply [5, Theorem 4.4(iv)] to the 2 F1 in (4.8) to obtain

F ∗(A, C; u−2) =
{

AC2(2)AC(−1)A(u) J(C A, Aφ)

J (φ, Aφ)

}
C Aφ

(−1 − u

2

)
2 F1

(
Cφ, Cφ

C Aφ

∣∣∣∣ 1 − u

2

)
. (4.9)
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Again since u �= −1, we can apply [5, Theorem 4.4(i)] to the 2 F1 in (4.9) to obtain

F ∗(A, C; u−2) =
{

AC2(2)AC(−1)A(u) J(C A, Aφ)

J (φ, Aφ)

}
C Aφ

(−1 − u

2

)
Cφ(−1) 2 F1

(
Cφ, Cφ

C Aφ

∣∣∣∣ 1 + u

2

)
.

Theorem 1.6 now follows upon replacing u by −u.

5. Proof of Theorem 1.8

Let S be a character whose order is not 1, 3, or 4. Then the hypotheses of Theorem 1.7 are satisfied
with A = S , C = Sφ, and u = 3. With these choices, Theorem 1.7 yields

3 F2

(
S, S3, S

S2, Sφ

∣∣∣∣ −1

8

)
= −φ(−1)S(−8)/q + φ(−1)S(−2) J(S, S3)

J (S, S)
2 F1

(
S, S

S2

∣∣∣∣ −1

)2

. (5.1)

First suppose that S is not a square. Then by [5, (4.11)], the 2 F1 in (5.1) vanishes, so (1.14) follows
in this case.

Finally, suppose that S = D2 for some character D . Then by [5, (4.11)], the 2 F1 in (5.1) equals

S(−1)
(

J (S, D) + J (S, Dφ)
)/

q,

so its square equals

(
J (S, D)2 + J (S, Dφ)2)/q2 + 2 J (S, D) J (S, Dφ)/q2.

It remains to show that

2φ(−1)S(8)/q = φ(−1)S(2) J(S, S3)

J (S, S)

(
2 J (S, D) J (S, Dφ)

q2

)
,

or equivalently,

qS(4) J (S, S) = J
(

S, S3) J (S, D) J (S, Dφ), S = D2.

This identity follows easily from (1.4)–(1.5).
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