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Notes:
Pythagorean Triples

Many people know that 32 + 42 = 52. Less commonly known are 52 + 122 = 132 and
72 + 242 = 252. Such a set of integers is called a Pythagorean Triple. The reason for the
name is the relation to the Pythagorean Theorem: The sum of the squares of the lengths
of the sides of a right triangle is equal to the square of the length of the hypotenuse. Thus,
a Pythagorean triple is a set of integers that form the sides and hypotenuse of a right triangle.

There are infinitely many Pythagorean triples. In fact, 62 + 82 = 102, 92 + 122 = 152,
and in general, (3k)2 + (4k)2 = (5k)2. This is not terribly satisfying since all these triples
are related to the triple (3, 4, 5). Geometrically, all triangles with sides 3k, 4k, and 5k are
similar. There are also infinitely many fundamentally different Pythagorean triples. Here
is a simple way to construct infinitely many triples of a specific form. Suppose we wish to
find all triples (x, y, z) with x2 + y2 = z2 and z = y + 2. We can just follow our noses: set
x2 + y2 = (y + 2)2. Multiplying this out, we get x2 = 4y + 4. The problem with this is for a
given y it might be hard to tell if 4y + 4 is a perfect square, and we need it to be a square
if we are to find x. To get around this, solve for y instead of x: y = x2−4

4
. We still have a

problem: we need x2 − 4 to be divisible by 4. But this is a much easier problem to fix: we
can just let x be even. Let’s introduce a new parameter, k. We let x = 2k, assuring that x

is even. Then y = (2k)2−4
4

= k2 − 1. Finally, z = y + 2 = k2 + 1, so our triple (x, y, z) can
be written (2k, k2− 1, k2 + 1). In fact, this always works, provided k > 1 giving us infinitely
many Pythagorean triples. As an example, when k = 4, this gives the triple (8, 15, 17), and
indeed, 82 + 152 = 64 + 225 = 289 = 172.

Is it possible to find all Pythagorean triples? Since there are infinitely many, a better
question would be to find a simple way to describe all Pythagorean triples. In fact, there
are several methods to do this. I will give three(!) such methods in this set of notes.

A Geometric approach

If x2 + y2 = z2, then dividing by z2 gives
(
x
z

)2
+

(
y
z

)2
= 1, an equation of the form

a2 + b2 = 1 where a and b are rational numbers (instead of integers). Similarly, if a2 + b2 = 1
for rational numbers a and b, and z is the least common multiple of the denominators of a
and b, then (za)2 + (zb)2 = z2 and za and zb will be integers. Thus, finding integer solutions
to x2 + y2 = z2 is equivalent to finding all rational solutions to x2 + y2 = 1. That is, we
wish to find all rational points on the unit circle. (A rational point is a point in which both
coordinates are rational numbers.) This may not sound like progress, but there is a simple
geometric approach to getting all rational points on the circle (and in general, rational points
on any conic section.) First, we find one particular rational point. This can be hard for some
curves, but it is easy for the circle. I will select the point (-1, 0). I could have picked lots
of other points instead, but this one will lead to the nicest formulas. Next, consider all lines
with rational slope which pass through (-1, 0).
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Such lines have equation y = m(x + 1). The point of using a line passing through (-1, 0) is
that the line will intersect the circle again in the first quadrant (positive x, y) if the slope is
between 0 and 1. If we call the second point (a, b), then we solve x2+y2 = 1 and y = m(x+1)
simultaneously. We have x2 + (m(x + 1))2 = 1, or (m2 + 1)x2 + 2m2x + m2 − 1 = 0. Since
we know x = −1 is one solution to this quadratic, we know it must have x + 1 as a factor.
In fact, (x + 1)((m2 + 1)x + m2 − 1) = 0, so the other solution is

x = −m2 − 1

m2 + 1
=

1−m2

1 + m2
.

Since y = m(x + 1), we have

y = m

(
1−m2

1 + m2
+ 1

)
= m

2

1 + m2
=

2m

1 + m2
,

and the point is

(a, b) =

(
1−m2

1 + m2
,

2m

1 + m2

)
. (1)

Note that if m is rational, then by the form of a and b, they must both be rational as
well. Conversely, if a and b are rational, then m must be rational as well. The reason for
this is that m is the slope of the line through (-1, 0) and (a, b). This line will have slope
m = b

a+1
, a rational number if a and b are rational. What this means is that there is a

one-to-one correspondence between rational points on the circle in the first quadrant and
rational numbers m with 0 < m < 1. Formula (1) is called a rational parameterization
of the circle: Every rational point is given in terms of some other variable, a parameter, m.

But we are interested in Pythagorean triples, so now we start the somewhat unpleasant
task of going from a rational point on the circle to a Pythagorean triple. Since m is rational,
we may write m = q

p
where p and q are positive integers. Since 0 < m < 1, we may assume
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that p > q > 0. We have

a =
1−m2

1 + m2
=

1− q2

p2

1 + q2

p2

=
p2 − q2

p2 + q2
, and b =

2m

m2 + 1
=

2 q
p

q2

p2
+ 1

=
2pq

p2 + q2
.

Since a = x
z

and b = y
z
, we have that (x, y, z) = (p2− q2, 2pq, p2 + q2) is a Pythagorean triple

for every choice of integers p > q > 0. Note that once we have found this, we can check it
easily:

x2 + y2 = (p2 − q2)2 + (2pq)2

= p4 − 2p2q2 + q4 + 4p2q2

= p4 + 2p2q2 + q4

= (p2 + q2)2 = z2.

Some examples:

p q x y z
2 1 3 4 5
3 1 8 6 10
3 2 5 12 13
4 1 15 8 17
4 2 12 16 20
4 3 7 24 25

Not all Pythagorian triples can be found this way, however! A simple example is
(x, y, z) = (4, 3, 5), which cannot occur since y = 2pq implies that y is even. As a more
complicated example, (x, y, z) = (15, 20, 25) cannot occur. In this case, we would need
2pq = 20 so pq = 10. Moreover, p > q > 0, so we are left with the cases p = 10, q = 1 or
p = 5, q = 2. These lead to the triples (99, 20, 101) and (21, 20, 29), neither of which is (15,
20, 25).

How can this be? We got EVERY positive rational solution to a2 + b2 = 1 by the
procedure we outlined. In the case of the triple (15, 20, 25), the corresponding values of a
and b are a = 15

25
and b = 20

25
. But 15

25
= 3

5
and 20

25
= 4

5
. Thus, many different Pythagorean

triples come from the same rational point on x2 + y2 = 1. In fact, if x2 + y2 = z2, then
for any rational number d, (dx)2 + (dy)2 = d2x2 + d2y2 = d2(x2 + y2) = d2z2 = (dz)2, so if
(x, y, z) is a Pythagorean triple, then so is (dx, dy, dz) for any rational number d for which
all three of dx, dy, dz are integers. This gives us our first real theorem of the course.

Theorem 1 Every Pythagorean triple has the form

(d(p2 − q2), 2dpq, d(p2 + q2))

for some integers p and q with p > q > 0 and some positive rational number d.
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It is customary to modify the problem of finding all Pythagorean triples as follows: Sup-
pose that any two of x, y, z are divisible by some integer, n. Then it is easy to see that
the third is also divisible by n. In this case, if we write x = x1n, y = y1n, z = z1n, then
x2 +y2 = z2 ⇒ n2x2

1 +n2y21 = n2z21 , so x2
1 +y21 = z21 . Because of this, we usually only look for

Pythagorean triples in which no two numbers have any factors in common. If two numbers
have no common factor, they are called relatively prime. If (x, y, z) is a Pythagorean triple
with x, y, z pairwise relatively prime, we call it a primitive Pythagorean triple. That is, (3,
4, 5) is primitive, (15, 20, 25) is not. What all this shows is that every Pythagorean triple
has the form (nx, ny, nz) where (x, y, z) is primitive.

Suppose that (x, y, z) is a primitive Pythagorean triple. Then exactly one of x, y, z
must be even. This is because odd + odd = even, odd + even = odd, even + odd =
odd, even + even = even, and we can’t have this fourth case because the triple would
not be primitive. Moreover, it turns out that z can’t be the even. To see this, suppose
that z is even, but the triple is primitive. This means x and y are odd. With all this,
we can write x = 2m + 1, y = 2n + 1, z = 2p, for some integers m,n, p. Plugging in,
(2m + 1)2 + (2n + 1)2 = (2p)2, or 4m2 + 4m + 4n2 + 4n + 2 = 4p2. But this last equation
has no integer solutions: If we divide by 2 we get 2p2 = 2(m2 + m + n2 + n) + 1. That is,
we would need 2p2 to be both even and odd. So it must be that one of x, y is even, and the
other and z are odd. It is customary to arbitrarily decide that we will pick y to be even and
x to be odd. That is, we ignore (8, 15, 17), but consider (15, 8, 17) instead. Of course this
means we skip some Pythagorean triples. To get all of them, we switch x and y.

Theorem 2 Every primitive Pythagorean triple (x, y, z) in which y is even has the form

(p2 − q2, 2pq, p2 + q2)

for some integers p and q where p > q > 0, p and q are relatively prime, and one of p and
q is even. Conversely, if p > q > 0, p and q are relatively prime, and one of them is even,
then (p2 − q2, 2pq, p2 + q2) is a primitive Pythagorean triple.

Proof: The converse is easier. We know that for any integers p, q with p > q > 0, that
(p2 − q2, 2pq, p2 + q2) is a Pythagorean triple. What we must show is that the triple is
primitive when p and q are relatively prime and one of them is even. Suppose that there
is a common divisor, d for (x, y, z). Then d is a common divisor for p2 − q2 and p2 + q2.
Since one of p and q is even and the other is odd, both of these expressions are odd, so d
must be odd. A common trick: If d divides two numbers, then it must divide their sum and
their difference (and any integer combination of the two numbers.) As a consequence, d is a
divisor of the sum, 2p2 and the difference, 2q2. Since d is odd, we can ignore the 2, so d is
a divisor of p2 and q2. Since p2 and q2 have a common factor, so do p and q, contradicting
the hypothesis that they are relatively prime. Thus, (p2 − q2, 2pq, p2 + q2) is a primitive
Pythagorean triple.
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For the other direction, let (x, y, z) be a primitive Pythagorean triple in which y is even.
From the geometric construction, there is a rational number, m, with 0 < m < 1 for which

x

z
=

1−m2

1 + m2
,

y

z
=

2m

1 + m2
.

We may write m = q
p

where p and q are relatively prime. Thus, we have relatively integers
p > q > 0 for which

x

z
=

p2 − q2

p2 + q2
,

y

z
=

2pq

p2 + q2
.

Next, suppose that p and q are both odd. If we write p = 2m + 1, q = 2n + 1, then

x

z
=

(2m + 1)2 − (2n + 1)2

(2m + 1)2 + (2n + 1)2
=

4m2 + 4m− 4n2 − 4n

4m2 + 4m + 4n2 + 4n + 2
.

From this, it follows that x must be even (the numerator is divisible by at least 4, the
denominator is divisible only by 2.) This contradicts the assumption that y is even and x is
odd. Consequently, one of p and q has to be even, as desired. This completes the proof.

Pythagorean triples from an algebraic approach

Everything above was based on the geometric idea that rational solutions of the equation
x2 + y2 = 1 can be found by considering lines of rational slope passing through one fixed
rational point on the curve (we used (-1, 0) because it was the most convenient point to
use). We now look at things from a purely algebraic point of view that goes back at least
to Euclid. Again, we restrict our attention to primitive Pythagorean triples. Suppose that
(x, y, z) is a primitive Pythagorean triple and that y is even. Then x2 + y2 = z2 can be
rearranged:

y2 = z2 − x2 = (z + x)(z − x) = 4

(
z + x

2

)(
z − x

2

)
.

Letting u =
z + x

2
, v =

z − x

2
, y = 2y1, we have 4y21 = 4uv, or y21 = uv. We can show that u

and v are relatively prime: if d is a divisor of both u and v, then d is a divisor of their sum,
u + v and their difference, u− v. But u + v = z, u− v = x, so d would have to be a divisor
of x and z. Since x and z are relatively prime, d = 1.

Theorem 3 If the product of two relatively prime positive integers is a square, then both
integers are squares.

We will prove this later. As an example, 12 × 75 = 900 = 302. Even though neither
12 nor 75 is a square, this does not contradict the theorem because they are not relatively
prime. What the theorem says is the only way to write 900 as the product of two rela-
tively prime positive integers is to use squares. We can certainly do this in many ways:
900 = 22 × 152 = 52 × 62, for example.
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If we believe Theorem 3, then uv = y21, with u and v relatively prime, so u = p2 and v = q2

for some integers p and q, which are relatively prime. Now x = u− v = p2− q2, z = u+ v =
p2+q2, and y2 = 4uv = 4p2q2 so y = 2pq. Thus, we again have (x, y, z) = (p2−q2, 2pq, p2+q2).

This may seem much shorter, but it really isn’t: With the geometric approach, we proved
things about primitive triples that we just used here without reproving them. Moreover, this
proof is incomplete because we have not yet proven Theorem 3.

A strange algebraic approach to Pythagorean triples

One last proof. This will be much like the previous one except for one thing: rather
than using the integers, we will use something called the Gaussian integers. These are
numbers of the form a+ bi, where a and b are integers and i =

√
−1. The Gaussian integers,

{a+ bi | a, b ∈ Z} are usually denoted Z[i]. We now proceed as before: Assume that (x, y, z)
is a primitive Pythagorean triple and that y is even. In the previous proof, we rearranged
x2 + y2 = z2 and used the fact that z2 − x2 factors. Here, we don’t have to rearrange. We
have z2 = x2 + y2 = (x + iy)(x − iy), where x + iy and x − iy are Gaussian integers. Now
suppose that d is a (Gaussian) integer which divides both x + iy and x − iy. Then d is a
divisor of their sum, 2x, and their difference, 2iy. Since x and y have no common divisors,
d must be a divisor of 2. In fact, 2 does have divisors! We have 2 = (1 + i)(1− i), so both
1 + i and 1− i are divisors of 2. However, if x is odd, say x = 2m + 1, and d is a divisor of
both 2 and x, then d is also a divisor of x− 2m but x− 2m = 1. This means d is a divisor
of 1. The Gaussian divisors of 1 are 1, -1, i,−i, so d must be one of these. Divisors of 1 are
called units. Among the ordinary integers, the units are 1 and -1. Here is an extension of
Theorem 3.

Theorem 4 If u and v are Gaussian integers, uv is a square, and the only common divisors
of u and v are units, then u and v must be squares multiplied by units.

In the case at hand, z2 = (x + iy)(x − iy) so x + iy = unit(p + qi)2. It turns out that
we can ignore the unit in this case (you might play around to see why) so we can write
x + iy = (p + qi)2 = p2 + 2pqi + (qi)2 = p2 − q2 + 2pqi. Equating real and imaginary parts
gives x = p2 − q2, y = 2pq.

Admittedly, we have to take a lot of things on faith in order to use this third approach.
However, it has the advantage of being quick, if we assume those things to be true. For
example, consider the variation on Pythagorean triples: (x, y, z) for which x2 + 2y2 = z2.
Suppose we want primitive triples that satisfy this equation. Note that if x is even, then the
left hand side would be even, so z2 would be even forcing z to be even and the triple would
not be primitive. So we can assume x and z are both odd. As with the Gaussian integers,
we force a factorization:

z2 = x2 + 2y2 = (x +
√
−2y)(x−

√
−2y).

We introduce a new set of “integers,” those things of the form a + b
√
−2 where a and b are

ordinary integers. This set is usually denoted Z[
√
−2]. More generally, if n is not a perfect
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square, we let Z[
√
n] be the set of all numbers of the form a + b

√
n, where a and b are

integers. Back to our example, x2 + 2y2 = z2. Since x and y are relatively prime, it follows
that x+ y

√
−2 and x− y

√
−2 will be relatively prime (this takes some effort to justify). As

before, the product of relatively prime things equaling a square forces each of them to be
squares, so

x + y
√
−2 = (p + q

√
−2)2 = p2 + 2pq

√
−2− 2q2 = p2 − 2q2 + 2pq

√
−2.

We have x = p2 − 2q2 and y = 2pq. For z, z2 = x2 + 2y2 = (p2 − 2q2)2 + 2(2pq)2 and I will
let you check that we get z = p2 + 2q2. This means that

(x, y, z) = (p2 − 2q2, 2pq, p2 + 2q2),

where p and q are relatively prime and p is odd. One slight correction: since x2 = (−x)2, it
is possible that p2 − 2q2 could be negative. We should write

(x, y, z) = (|p2 − 2q2|, 2pq, p2 + 2q2).

We would have actually seen the absolute value arise if we had been more careful about units.
The geometric approach will work on this problem as well. I ask you to use the geometric
approach on x2 + 2y2 = z2 in the homework.

One final example: Find all primitive triples to x2 + 6y2 = z2. Proceeding as before, and
skipping most details, z2 = x2 + 6y2 = (x+ y

√
−6)(x− y

√
−6). Since x and y are relatively

prime, it follows that x + y
√
−6 and x − y

√
−6 will be relatively prime (again, this takes

some effort to justify). As before, we have the product of relatively prime things equaling a
square so

x + y
√
−6 = (p + q

√
−6)2 = p2 + 2pq

√
−6− 6q2 = p2 − 6q2 + 2pq

√
−6.

We have x = p2 − 6q2, y = 2pq, z = p2 + 6q2, so

(x, y, z) = (|p2 − 6q2|, 2pq, p2 + 6q2).

For example, picking p = 5, q = 2 we get x = 25−24 = 1, y = 2×5×2 = 20, z = 25+24 = 49,
and indeed 12 + 6 × 202 = 2401 = 492. What a great method! Unfortunately, something
is definitely wrong here: (1, 2, 5) is a primitive solution to x2 + 6y2 = z2 but it does not
have the right form. That is, there are no p and q which can give this triple. To try to
see what is going on, we can check our calculations with x = 1, y = 2, z = 5. We have
52 = (1 + 2

√
−6)(1− 2

√
−6) but it turns out that even though 1 + 2

√
−6 and 1− 2

√
−6 are

relatively prime, and multiply to a square, neither of them is a perfect square. Let’s be ultra
careful on these points. First, if 1 + 2

√
−6 and 1− 2

√
−6 had a factor in common, it would

have to be a divisor of their sum, 2. Can we write 2 = (a + b
√
−6)(c + d

√
−6)? Here is a

great simplifying trick: If a formula holds for complex numbers, then if you take the complex
conjugate of everything, you get another formula. That is, since 2 = (a+ b

√
−6)(c+d

√
−6),

we must also have 2 = (a − b
√
−6)(c − d

√
−6). Next, if we multiply these two equations
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together, we get 4 = (a2 + 6b2)(c2 + 6d2). But a2 + 6b2 > 4 unless b = 0. Similarly, we
would need d = 0, so we want 4 = a2c2, forcing a or c to be a unit. The consequence of this:
the only common factors 1 + 2

√
−6 and 1− 2

√
−6 can have are ±1 or ±2. Since neither is

divisible by 2, this leaves only units, so they are relatively prime.

Next, can 1 + 2
√
−6 be a square? This would require 1 + 2

√
−6 = (a + b

√
−6)2 =

a2 − 6b2 + 2ab
√
−6. That is, we need 1 = a2 − 6b2 and 2 = 2ab. This last equation has only

a = b = 1 or a = b = −1 as solutions, and in each case, a2 − 6b2 = −5 6= 1.

Consequently, Theorem 3 might be true for ordinary integers and Theorem 4 might be
true for Gaussian integers, but the general statement is not true in all extensions of integers.
What goes wrong (or right for the ordinary integers and for Gaussian integers) is a property
that systems of integer-like things might have called Unique Factorization. We discuss
the Unique Factorization Property in the next set of notes.
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