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Determinants:
Uniqueness and more

Uniqueness

The main theorem we are after:

Theorem 1 The determinant of and n × n matrix A is the unique n-linear, alternating
function from F n×n to F that takes the identity to 1.

This will follow if we can prove:

Theorem 2 If D : F n×n → F is n-linear and alternating, then for all n × n matrices
A, D(A) = det(A)D(I).

So far, we have proved that determinants exist for all n×n matrices, but not the uniqueness
part. The trick was to show that cofactor expansions define n-linear, alternating functions.
Now we want to prove uniqueness by following something like what we did for n = 2:

Lemma 1 The determinant, det

(
a b
c d

)
= ad− bc is the unique 2-linear, alternating func-

tion satisfying det(I) = 1. Moreover, if D is any 2-linear, alternating function on 2 × 2
matrices, then D(A) = det(A)D(I) for all 2× 2 matrices A.

Proof: We do both parts at the same time. I will let you check that the usual determinant
is, in fact, 2-linear and alternating. Suppose D is 2-linear and alternating. We use linearity
in the first row, and then the second, using, for example, (a, b) = a(1, 0) + b(0, 1). We have

D

(
a b
c d

)
= aD

(
1 0
c d

)
+ bD

(
0 1
c d

)
= acD

(
1 0
1 0

)
+ adD

(
1 0
0 1

)
+ bcD

(
0 1
1 0

)
+ bdD

(
0 1
0 1

)
.

By alternating property (a), the first and last of the four terms are 0. By property (b), we
can write

D

(
a b
c d

)
= adD

(
1 0
0 1

)
+ bcD

(
0 1
1 0

)
= adD

(
1 0
0 1

)
− bcD

(
1 0
0 1

)
= (ad− bc)D

(
1 0
0 1

)
= (ad− bc)D(I),

as desired.

Let’s sketch out the proof in the case of 3× 3 matrices. It goes like this: We ask that D
be an n-linear, alternating function on 3 × 3 matrices, and see if this forces a formula out.
The start would be

D

a b c
d e f
g h i

 = aD

1 0 0
d e f
g h i

+ bD

0 1 0
d e f
g h i

+ cD

0 0 1
d e f
g h i

 ,



where we have used linearity in the top row of the matrix. Next, we use linearity in the
second row, and we get a total of 9 terms. Using linearity in the bottom row, we have a total

of 27 terms in our sum. An example of one of the terms might be beiD

0 1 0
0 1 0
0 0 1

. The

pattern: given the coefficients we picked, there are 1’s in their positions and 0’s everywhere
else. Since this matrix has two equal rows, it contributes 0 to the actual determinant. What
does contribute to the determinant? Those terms where we pick one variable from each row
and each column. We have

D

a b c
d e f
g h i

 = aeiD

1 0 0
0 1 0
0 0 1

+ afhD

1 0 0
0 0 1
0 1 0

+ bdiD

0 1 0
1 0 0
0 0 1


+ bfg D

0 1 0
0 0 1
1 0 0

+ cdhD

0 0 1
1 0 0
0 1 0

+ ceg D

0 0 1
0 1 0
1 0 0

 .

Next, interchanging any two rows changes the sign of D. We can interchange two rows on
each of the second, third and sixth matrices to convert them into I3 For the fourth and fifth
matrices, it takes two row interchanges to convert them into I, and for the first, no row
interchanges. After doing these row interchanges, we can factor out D(I) to get

D

a b c
d e f
g h i

 = (aei+ bfg + cdh− afh− bdi− ceg)D

1 0 0
0 1 0
0 0 1

 .

This completes the proof of Theorem 2 when n = 3, and to get Theorem 1, we normalize
D(I) = 1 and recover the usual formula for the determinant of a 3 × 3 matrix. Note this
does not prove, technically, that the usual determinant is n-linear and alternating. Instead,
what it showed is that if there were such a function, it would have to have the formula
given (so there are either no such functions or exactly one of them). But from the first set
of notes, we know determinants exist. This is what tells us that this formula does, in fact,
give a determinant.

Now on to the n× n case. Let D be an n-linear, alternating function on n× n matrices.
As with the 3× 3 case, we can use linearity to expand across each of the n rows. This will
result in nn total terms. Using double subscript notation, each of these terms will have the
form

a1,i1a2,i2 · · · an,in D(ei1 , ei2 , . . . , ein)

for some collection of integers i1, . . . , in, all ranging from 1 to n. Here, ek means the k’th
standard basis vector, but in row form rather than the usual column form. This means we
have a formula of sorts:

D(A) =
n∑

i1=1

n∑
i2=1

· · ·
n∑

in=1

a1,i1a2,i2 · · · an,in D(ei1 , ei2 , . . . , ein).
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However, most of the terms in the above sum are 0. In fact, if n = 5 the sum has 3125
terms, of which 3005 of them are 0. We try to weed these terms out. As with the 3× 3 case,
many terms will have equal rows. In fact, if any ij equals an ik then rows j and k will be the
same and by the alternating property, the term must be 0. What remains is the case where
every ij is different from every other one. As we probably know, a collection of n integers
between 1 and n is called a permutation of n. There are a total of n! permutations of
n, and this is a much smaller number than nn. It is useful to think of a permutation as a
function from {1, 2, . . . , n} to {1, 2, . . . , n}. That is, the permutation of 4: (3, 2, 4, 1) can
be though of as a function f with f(1) = 3, f(2) = 2, f(3) = 4, f(4) = 1. As we can see,
to be a permutation, f must be one-to-one and onto. It is customary to use Greek letters
like σ, τ, π to represent permutations. With such notation, we can write our determinant
formula a bit more compactly:

D(A) =
∑
σ

a1,σ(1)a2,σ2 · · · an,σ(n)D(eσ(1), eσ(2), . . . , eσ(n)).

Here, it is understood that the sum ranges over all permutations σ. We can say more:
Using the other property of alternating functions, we can re-order the standard basis vec-
tors eσ(1), eσ(2), . . . , eσ(n) into the usual order e1, e2, . . . , en. At this point, we will have
D(ei1 , ei2 , . . . , ein) → D(I). This can be done with some number of row interchanges, and
each interchange flips the sign of the term. This means that for each σ there is a sign as-
sociated with D(eσ(1), eσ(2), . . . , eσ(n)), either positive if an even number of row interchanges
brings the matrix to I. This sign is often denoted sgn(σ). Now our formula is

D(A) =
∑
σ

a1,σ(1)a2,σ2 · · · an,σ(n)D(eσ(1), eσ(2), . . . , eσ(n))

=
∑
σ

a1,σ(1)a2,σ2 · · · an,σ(n) sgn(σ)D(I)

=

(∑
σ

a1,σ(1)a2,σ2 · · · an,σ(n) sgn(σ)

)
D(I).

We say the expression inside the parentheses is det(A) and we get that for any n-linear,
alternating function D, that D(A) = det(A)D(I). That is, we have proved Theorems 1 and
Theorem 2.

There are still some loose ends we can work on. The matrix with rows eσ(1), eσ(2), . . . , eσ(n)
is called a permutation matrix and is denoted Iσ. For example, if σ is the permutation

(5, 1, 3, 2, 4) then Iσ =


0 0 0 0 1
1 0 0 0 0
0 0 1 0 0
0 1 0 0 0
0 0 0 1 0

. One way to define sgn(σ) is to let it be det(Iσ).

It will be (−1)k where k is the number of row interchanges needed to transform Iσ to the
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identity. The value of k is not unique, but it will always have the same parity. One simple
way to calculate a k-value is the inversion number of the permutation. This is defined
to be the smallest number of interchanges of adjacent entries to put the permutation in
increasing order. An easy count to get the inversion number is for each number, to add
up the number of things to its left that are larger than it. That is, for (5, 1, 3, 2, 4), 5
contributes no inversions, 1 contributes one (5 is left of 1 in σ), 3 contributes one inversion,
2 contributes two (5 and 3) and 4 contributes 1. This means the inversion number, denoted
inv(σ) is 0 + 1 + 1 + 2 + 1 = 5, and the sign of σ is (−1)5 = −1. One commonly written
formula for the determinant is

det(A) =
∑
σ

(−1)inv(σ)a1,σ(1)a2,σ2 · · · an,σ(n). (1)

You might want to check that this works in the 3× 3 matrix case.

Properties of the determinant

Given our formula for the determinant, and the fact that it is unique, we have several
consequences.

Corollary 1 In the proof that determinants exist, Theorem 3 in the first set of notes, every
Ej is the determinant. That is, Ej(A) = Ek(A) for every j and k between 1 and n. Thus
one can calculate the determinant by a cofactor expansion down any column.

Corollary 2 If A is upper triangular or lower triangular, then det(A) is the product of the
elements on its diagonal.

Proof: Let’s give two proofs of this, both fairly similar. First, we can use Corollary 1 and
do a cofactor expansion down the first column for upper triangular matrices, or down the
last column for lower triangular matrices to reduce to the (n− 1)× (n− 1) case. The proof
now follows by induction.

For a second proof, use the formula for the determinant. Let’s focus on the case of upper
triangular matrices. These matrices have the property that ai,j = 0 for all i > j. We have
terms of the form a1,σ(1)a2,σ(2) · · · an,σ(n) to consider. We want terms that are nonzero, so
none of the a’s should be below the diagonal, meaning, again, that we want i ≤ σ(i) for all
i. If σ(n) ≥ n we need σ(n) = n. Now we need σ(n− 1) ≥ n− 1 but it can’t equal n so we
need σ(n− 1) = n− 1 and by induction, we can show that for all k, σ(k) = k. This means
that there is only one permutation with all entries on or above the main diagonal and that
is the permutation σ(i) = i for all i so the sum reduces to a single term, a1,1a2,2 · · · an,n, the
product of the things on the main diagonal.
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Corollary 3 Since the determinant is n-linear, one can use row reduction to calculate it.

Proof: The catch is that we must pay attention to some of our steps. If we interchange
two rows, we record a minus sign, if we divide a row by a constant, c, then we record that
constant c as a multiplicative factor. But most interesting, adding a multiple of one row to
another does not change the determinant. The reason for this: suppose we add c(row i) to
row j to get a new matrix, A′. We can use linearity in row j in A′. That row will be
(row j) + c(row i). This means det(A′) = det(A1) + c det(A2). Now A1 has row j (from A)
as the j’th row, meaning A1 = A. But A2 has row i (from A) as its j’th row, and this means
A2 has two equal rows, row i and row j, so its determinant is 0, and det(A′) = det(A).

For example,∣∣∣∣∣∣
4 25 49
2 5 7
8 125 343

∣∣∣∣∣∣ = −

∣∣∣∣∣∣
2 5 7
4 25 49
8 125 343

∣∣∣∣∣∣ = −

∣∣∣∣∣∣
2 5 7
0 15 35
0 105 315

∣∣∣∣∣∣ = −

∣∣∣∣∣∣
2 5 7
0 15 35
0 0 70

∣∣∣∣∣∣ = −2100.

Corollary 4 If A and B are n× n matrices, then det(AB) = det(A) det(B).

Proof: Fix B and consider the function D(A) = det(AB). Since B acts linearly on the rows
of A, D is an n-linear function. Moreover, if two rows of A are the same, then two rows
of AB are the same so det(AB) = 0 meaning that D is also alternating. By our theorem,
D(A) = det(A)D(I) = det(A) det(B), as desired.

Corollary 5 Consider the block upper triangular matrix M =

(
A B
0 C

)
. If both A and C

are square matrices then det(M) = det(A) det(C).

Proof: Define a function D(C) by D(C) = det

(
A B
0 C

)
, where A and B are fixed ma-

trices. Then D is n-linear and alternating, where n is the size of C. As such, D(C) =

det(C)D(I) = det(C) det

(
A B
0 I

)
. Next, we can use row operations to use I to convert

B to a matrix of all 0’s. Finally, by cofactor expansions down the last n columns, we get

that det

(
A B
0 C

)
= det(C) det(A), as desired.

Note that we could not set D(A) = det(M) and used n-linearity with A because the
matrix B is fixed, so only parts of a row of M would change as we changed rows of A. With
C, the entries of M to the left of any row are all 0’s, and things work. As an example, by
this corollary,

1 2
3 4

3 4 5
5 6 7

0 0
0 0
0 0

1 1 1
2 3 5
4 9 4

 = det

(
1 2
3 4

)
det

1 1 1
2 3 5
4 9 4

 = (−2)(−20) = 40.
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The determinant of At.

We probably all know that a (square) matrix and its transpose have the same determinant.
We now try to prove this. Recall that the transpose of a matrix interchanges the rows and
columns. This means that the (i, j) entry in At is the (j, i) entry in A. If we use Formula
(1) we can write

det(At) =
∑
σ

(−1)inv(σ)aσ(1),1aσ2,2 · · · aσ(n),n (2)

We could rearrange the a’s to put things in increasing order of the row index again. Do-
ing so changes the permutation, however. In fact, the permutation that takes σ(1) to 1,
σ(2) to 2 and so on is the inverse permutation of σ, written σ−1. That is, consider
the term a1,4a2,3a3,5a4,1a5,2. The permutation here is σ defined by σ(1) = 4, σ(2) =
3, σ(3) = 5, σ(4) = 1, σ(5) = 2. When we take the transpose of A the term changes
to a4,1a3,2a5,3a1,4a2,5 which can be arranged to a1,4a2,5a3,2a4,1a5,3. The new permutation, call
it τ has τ(1) = 4, τ(2) = 5, τ(3) = 2, τ(4) = 1, τ(5) = 3. This is the inverse permutation to
σ: if σ(i) = j then τ(j) = i. Now summing over all permutations σ is the same as summing
over all permutations σ−1. But there is one catch. If we replace σ by σ−1 in (2) then

det(At) =
∑
σ

(−1)inv(σ)aσ(1),1aσ2,2 · · · aσ(n),n

=
∑
σ

(−1)inv(σ)a1,σ−1(1)a2,σ−12 · · · an,σ−1(n)

=
∑
σ

(−1)inv(σ
−1)a1,σ(1)a2,σ2 · · · an,σ(n).

This is almost identical to Formula (1) but we have inv(σ−1) instead of inv(σ). We
could get rid of the inversion number and write it as det(Iσ−1) instead. Does this help? I
claim that Iσ−1 is the inverse matrix of Iσ. If so, then

1 = det(I) = det(IσIσ−1) = det(Iσ) det(Iσ−1).

Since each determinant is ±1, they must be the same. Knowing this, we get that the inver-
sion numbers for σ and σ−1 at least have the same parity and we can replace inv(σ−1) by
inv(σ) and the final line in the calculation above becomes det(A) by formula (1), proving
det(At) = det(A).

We must still verify the claim, that Iσ−1 is the inverse matrix of Iσ. It is pretty easy to
see that the inverse of Iσ is its transpose. For example, with σ = (5, 1, 3, 2, 4), used as an
example before, we have

IσI
t
σ =


0 0 0 0 1
1 0 0 0 0
0 0 1 0 0
0 1 0 0 0
0 0 0 1 0




0 1 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 0 0 1
1 0 0 0 0

 =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 .
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The reason for this is that column k of the transpose is row k of Iσ, and this has its 1 in
exactly the same place so the (k, k) entry in the product will be 1, and all other entries in
that column will be 0, meaning the product has all 1’s on the diagonal and 0’s everywhere
else. Now we can write Iσ as the sum of basis matrices:

Iσ = E1,σ(1) + E2,σ(2) + · · ·+ En,σ(n).

Taking the transpose reverses the subscripts so

I tσ = Eσ(1),1 + Eσ(2),2 + · · ·+ Eσ(n),n,

but as we saw before, if we reorder these matrices by increasing row number, we get

E1,σ−1(1) + E2,σ−1(2) + · · ·+ En,σ−1(n) = Iσ−1 ,

so I−1σ = I tσ = Iσ−1 . Looking at the permutation σ = (5, 1, 3, 2, 4) again, we see that the
transpose matrix corresponds to the permutation τ = (2, 4, 3, 5, 1), the inverse permutation of

σ. This is more obvious in the two-line formulation of permutations: σ =

(
1 2 3 4 5
5 1 3 2 4

)
.

The trick to getting the inverse is to interchange top and bottom rows, and sort the top row:

σ−1 =

(
5 1 3 2 4
1 2 3 4 5

)
=

(
1 2 3 4 5
2 4 3 5 1

)
= τ.

As a corollary, we can now calculate the determinant by a cofactor expansion across any
row. Additionally, one can use column reduction (as opposed to row reduction) to calculate
a determinant, along with any combination of row reduction, column reduction and cofactor
expansion. For example,∣∣∣∣∣∣

4 25 49
2 5 7
8 125 343

∣∣∣∣∣∣ = 2 · 5 · 7

∣∣∣∣∣∣
2 5 7
1 1 1
4 25 49

∣∣∣∣∣∣ = 70

∣∣∣∣∣∣
2 3 5
1 0 0
4 21 45

∣∣∣∣∣∣ = 70 · 3 · 5

∣∣∣∣∣∣
2 1 1
1 0 0
4 7 9

∣∣∣∣∣∣
= −1050

∣∣∣∣1 1
7 9

∣∣∣∣ = −1050 · 2 = −2100.

Adjoints, inverses and Cramer’s Rule

Given an n×n matrix A, we define the (i, j) cofactor of A to be ci,j = (−1)i+j det(A(i | j)).
The fact that the determinant can be calculated via a cofactor expansion across any row or
down any column is expressed by the formulas

det(A) = ai,1ci,1 + ai,2ci,2 + · · ·+ ai,nci,n (3)

= a1,jc1,j + a2,jc2,j + · · ·+ an,jcn,j, (4)

where the first line represents an expansion across row i and the second line is the ex-
pansion down column j. Given the double subscripts on ci,j it seems natural to gather
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all the c’s into a matrix C, called the cofactor matrix of A. If A =

1 1 1
1 2 3
2 8 5

 then

C =

−14 1 4
3 3 −6
1 −2 1

. Now formula (3) says we can calculate det(A) by taking any row

of A, multiplying entries by the corresponding entries from that row of C and adding. For
example, det(A) = 2 − 16 + 5 = −9. Formula (4) says we could do the same for corre-
sponding columns of A and C, for example, det(A) = 4 − 18 + 5 = −9. It is curious that
if we play this game, but use two different rows, say row 3 from A and row 1 from C then
we get −28 + 8 + 20 = 0. Similarly, if we mis-match columns from A and C, the resulting
calculation is 0. If this pattern is real, then consider ACt. In this product, we multiply the
ith row of A by the j’th column of Ct to get the (i, j) entry of the product. But the j’th
column of Ct is the j’th row of C so when i = j we get det(A) and when i 6= j we get 0. As
a consequence, ACt = det(A)I or, when det(A) 6= 0, A 1

det(A)
Ct = I.

To prove that mismatched rows from A and C combine to get 0, we use a trick. Suppose
we form a matrix B from A as follows: B is the same as A but we replace row j of A by row
i. That is, B has two equal rows. Now do a cofactor expansion across row j of B. In this
case, the cofactors will be the same as for A because for each k, B(j | k) = A(j | k). What
this means is det(B) = bj,1cj,1 + bj,2cj,2 + · · · + bj,ncj,n, where the cofactors are the same as
the cofactors from A. But row j of B is row i from A so bj,k = ai,k for each k. Since B has
two equal rows, det(B) = 0 = ai,1cj,1 + ai,2cj,2 + · · · + ai,ncj,n, as desired. This is enough to

justify A 1
det(A)

Ct = I so we have A−1 =
1

det(A)
Ct. Interchanging A and A−1 tells us the

columns also have the miss-match property. The transpose of the cofactor matrix is often
called the adjoint of A. Some books say adjugate instead. The notation is adj(A) = Ct.

Theorem 3 (Cramer’s Rule) Suppose A is an invertible n×n matrix. Then the solution

to A~x = ~b is

x1 =
det(A1)

det(A)
, x2 =

det(A2)

det(A)
, . . . , xn =

det(An)

det(A)
,

where Ak is the matrix obtained by replacing the k’th column of A by ~b.

Proof: I’ll only sketch the proof of this. We start by solving for ~x, ~x = A−1~b = 1
det(A)

adj(A)~b.

To get the k’th coordinate, xk from ~x we multiply ~b by the k’th row of adj(A) and divide
by the determinant of A. Now the k’th row of adj(A) is the k’th column of C, the cofactor

matrix for A. Now form Ak by replacing the k’th column of A by ~b and do a cofactor
expansion down that column. This will perform this calculation of multiplying entries of ~b
by the appropriate cofactors.
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