
Math 4326
Fall 2018

Matrices related to
linear transformations

We have encountered several ways in which matrices relate to linear transformations. In
this note, I summarize the important facts and formulas we have encountered.

The matrix of a linear transformation from Rn to Rm.

Theorem 1 Given a linear transformation T : Rn → Rm, there is an m × n matrix A for
which T (v) = Av for all v in Rn. This matrix is

A = (T (e1) |T (e2) | · · · |T (en)), (1)

where {e1, e2, . . . , en} is the standard basis for Rn.

Thus, the only transformations from Rn to Rm are matrix transformations, and we can cal-
culate the range of T by finding the column space of A and the kernel of T by finding the
null space of A.

Transition matrices

Given two bases B = {v1, v2, . . . , vn} and C = {w1, w2, . . . , wn} for the same vector space V,
we can change coordinates with respect to one basis to coordinates with respect to the other
via matrix multiplication by an appropriate matrix. That is, [v]C = P [v]B for some matrix
P. This matrix, P, is called the transition matrix from B to C. Our book uses the notation
P

C←B
to emphasize that we are changing from B to C coordinates using P. The formula for

P is
P

C←B
= ([v1]C | [v2]C | · · · | [vn]C). (2)

In words, to go from B to C, P is obtained by forming the C-coordinates of each B-basis
vector. Also, you should note the similarity between this formula and the one above. To
make it look even more similar, define T : V → Rn by T (v) = [v]C . That is, let T be the
coordinate map with respect to C-coordinates. As mentioned in class, the coordinate map
is linear. We can rewrite our matrix in the form:

P
C←B

= (T (v1) |T (v2) | · · · |T (vn)). (3)

There are two ways to get the transition matrix from C to B. If we call this matrix Q, then
Q = P

B←C
. The direct approach is that

Q = P
B←C

= ([w1]B | [w2]B | · · · | [wn]B).

The indirect approach is that Q = P−1. That is,

P
B←C

= ( P
C←B

)−1. (4)



The matrix of a linear transformation from V to W, with respect to bases B for
V and C for W

If we don’t have T : Rn → Rm then then Theorem 1 does not apply. In fact, there are
matrices that represent linear transformations, but only if we use coordinate systems.

Theorem 2 Let T : V → W be a linear transformation. Suppose B = {v1, v2, . . . , vn} is a
basis for V, and C is a basis for W. Then there is a matrix A, for which [T (v)]C = A[v]B. In
fact, we have a formula for A:

A = ([T (v1)]C | [T (v2)]C | · · · | [T (vn)]C). (5)

We have notation for this matrix. It is usually denoted [T ]B,C . Again, you should note how
similar (5) is to (3), and even to (1).

Proof of theorem: Let v be a vector in V. Then for some scalars c1, c2, . . . , cn, we have
v = c1v1 + c2v2 + · · ·+ cnvn. Given this,

T (v) = T (c1v1 + c2v2 + · · ·+ cnvn)

= c1T (v1) + c2T (v2) + · · ·+ cnT (vn).

Now

[T (v)]C = [c1T (v1) + c2T (v2) + · · ·+ cnT (vn)]C

= c1[T (v1)]C + c2[T (v2)]C + · · ·+ cn[T (vn)]C

= ([T (v1)]C | [T (v2)]C | · · · | [T (vn)]C)


c1
c2
...
cn


= A[v]B,

as desired.

A natural question to ask is how the range and kernel of T relate to A. It is NOT the
case that the range of T is the column space of A, or that Ker(T ) = Null(A). It is im-
portant that you understand why they are not equal, so take some time to think about
this. What IS true is the following: The column space of A gives the coordinates for
the vectors in Range(T ) and Null(A) gives the coordinates for the vectors in Ker(T ). To
find a basis for the range of T, find a basis for the column space of A and these will be
the coordinates for the basis vectors for the range. Similarly, to find a basis for the kernel
of T, first find a basis for Null(A). These vectors are the coordinates for the basis for Ker(T ).

As an example, consider a problem from Homework 8: T : P2 → M2×2 defined by

T (p(t)) =

(
p(1) + p(2) p(2)

p(1) p(1)− p(2)

)
. We will calculate [T ]B,C , where B is the standard

Page 2



basis for P2 and C is the standard basis for M2×2. We have

T (1) =

(
2 1
1 0

)
→ [T (1)]C =


2
1
1
0

 ,

T (t) =

(
3 2
1 −1

)
→ [T (t)]C =


3
2
1
−1

 ,

T (t2) =

(
5 4
1 −3

)
→ [T (t2)]C =


5
4
1
−3

 .

We now have the columns for A = [T ]B,C , giving

A = [T ]B,C =


2 3 5
1 2 4
1 1 1
0 −1 −3

 .

Suppose we wish to calculate T (2t2 + t + 1) by matrix multiplication using the formula
[T (v)]C = A[v]B instead of just using the formula for T. Here is what we would do: First

find the coordinates for 2t2 + t+ 1: [2t2 + t+ 1]B =

1
1
2

 . Next, multiply by A:
2 3 5
1 2 4
1 1 1
0 −1 −3


1

1
2

 =


15
11
4
−7

 . This is NOT the answer. Instead, what we have is

[T (v)]C =


15
11
4
−7

. Finally, converting from coordinates to matrices, T (v) =

(
15 11
4 −7

)
.

To find the kernel and range of T , we may first find the null space and column space of
A. This will give us coordinates of the respective bases. We reduce A:

2 3 5
1 2 4
1 1 1
0 −1 −3

⇒


1 1 1
0 1 3
0 1 3
0 1 3

⇒


1 0 −2
0 1 3
0 0 0
0 0 0

 .

A basis for the column space of A consists of the first two columns of A. These are the

coordinates for the basis vectors for Range(T ) so this basis is

{(
2 1
1 0

)
,

(
3 2
1 −1

)}
. A
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basis for Null(A) is


 2
−3
1

. Converting to P2, a basis for the kernel of T is {t2−3t+ 2}.

Mixing bases
You can safely skip this section.

Suppose that T : V → W and we have several bases: B1, B2 for V and C1, C2 for W.
Then we have our choice of bases to use to find the matrix of the transformation. How are
the matrices related to each other? They are related by transition matrices among the bases.

Theorem 3 Let T : V → W be a linear transformation and suppose B1 and B2 are bases
for V and C1 and C2 are bases for W. Then

[T ]B2,C2 = P
C2←C1

[T ]B1,C1 P
B1←B2

.

Proof. In general, if you have two matrices, A and B, and if Av = Bv for all v, then A = B.
(Can you prove this?) We use this result on matrices to show that the two matrices

[T ]B2,C2 and P
C2←C1

[T ]B1,C1 P
B1←B2

are the same. Given a vector v in V, by the defining property of the matrix of a transforma-
tion,

[T ]B2,C2 [v]B2 = [T (v)]C2 .

On the other hand,(
P

C2←C1

[T ]B1,C1 P
B1←B2

)
[v]B2 = P

C2←C1

[T ]B1,C1

(
P

B1←B2

[v]B2

)
= P

C2←C1

[T ]B1,C1 [v]B1

= P
C2←C1

[T (v)]C1

= [T (v)]C2 .

That is, for all vectors v,

[T ]B2,C2 [v]B2 =

(
P

C2←C1

[T ]B1,C1 P
B1←B2

)
[v]B2 ,

so the two matrices must be the same.

I think of this as follows: [T ]B1,C1 expects to see B1 coordinates, and [T ]B2,C2 expects
to see B2 coordinates. If you want to feed a matrix B2 coordinates and get C2-coordinate
answers, the direct approach is to use [T ]B2,C2 . However, there is the following indirect route:

Page 4



use the transition matrix, P
B1←B2

, to convert B2 coordinates to B1 coordinates, then multi-

ply by [T ]B1,C1 , giving an answer in C1 coordinates. Finally, multiply by another transition
matrix, P

C2←C1

, to get the desired C2-coordinate answer.

Continuing our previous example, suppose that B1 = {1, t− 1, t2 − 3t+ 2},

C1 =

{(
1 0
1 1

)
,

(
1 1
0 −1

)
,

(
0 0
1 0

)
,

(
0 0
0 1

)}
and we wish to calculate [T ]B1,C1 for the trans-

formation on Page 3. We could do this in two ways. The direct approach is to use:

[T ]B1,C1 = ([T (1)]C1 | [T (t− 1)]C1 | [T (t2 − 3t+ 2)]C1)

=

{(
2 1
1 0

)
C1

(
1 1
0 −1

)
C1

(
0 0
0 0

)
C1

}

=


1 0 0
1 1 0
0 0 0
0 0 0

 .

Alternatively, we may use the formula from Theorem 3:

[T ]B1,C1 = P
C1←C

[T ]B,C P
B←B1

where B is the standard basis for P2 and C is the standard basis for M2×2. The transition
matrices are:

P
B←B1

= ([1]B | [t− 1]B | [t2 − 3t+ 2]B) =

1 −1 2
0 1 −3
0 0 1


and

P
C1←C

=

{(
1 0
0 0

)
C1

(
0 1
0 0

)
C1

(
0 0
1 0

)
C1

(
0 0
0 1

)
C1

}
=


1 −1 0 0
0 1 0 0
−1 1 1 0
−1 2 0 1

 .

By the theorem,

[T ]B1,C1 =


1 −1 0 0
0 1 0 0
−1 1 1 0
−1 2 0 1




2 3 5
1 2 4
1 1 1
0 −1 −3


1 −1 2

0 1 −3
0 0 1



=


1 −1 0 0
0 1 0 0
−1 1 1 0
−1 2 0 1




2 1 0
1 1 0
1 0 0
0 −1 0



=


1 1 0
0 1 0
0 0 0
0 0 0

 .
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This second matrix also contains all the information about T . For example, if we were
asked to find the kernel of T , we could use this second matrix. The null space of the matrix

is spanned by

0
0
1

. This is different from before, but remember, this is not the kernel, it

is a coordinate vector for a kernel vector. Using the basis B1, the kernel is spanned by the
vector 0 ·1 + 0(t−1) + 1(t2−3t+ 2) = t2−3t+ 2. That is, once we convert from coordinates
to a vector in P2, we get exactly the same answer.

Linear operators, eigenvectors, and diagonalization
This section is important, at least for the examples.

A linear operator is a linear transformation from a space to itself. That is, rather than
T : V → W, we have T : V → V. That is, V and W are the same space. In this case, we
only need one basis, B of V. If B = {v1, v2, . . . , vn}, then we write

[T (v)]B = A[v]B,

where
A = ([T (v1)]B | [T (v2)]B | · · · | [T (vn)]B).

We use the notation A = [T ]B rather than [T ]B,B. In the case of a linear operator, with two
bases, B and C for V, Theorem 3 becomes

[T ]C = P
C←B

[T ]B P
B←C

.

Since P
C←B

=
(
P

B←C

)−1
, we can write this

[T ]C = P−1[T ]BP,

where P = P
B←C

. That is, all matrices that represent T are similar to each other. In fact,

this is what similarity actually means! That is, if A and B are similar to each other, then
there is a linear transformation T for which A and B are the matrices representing T with
respect to some bases.

Here are three examples of these formulas. First, consider T : P3 → P3 defined by
T (p(t)) = (t + 2)p′(t). Let S be the standard basis for P3, {1, t, t2, t3} and let C = {1, t +
2, (t+ 2)2, (t+ 2)3} be a second basis. We have

A = [T ]S = ([T (1)]S | [T (t)]S | [T (t2)]S | [T (t3)]S)

= ([0]S | [t+ 2]S | [2t2 + 4t]S | [3t3 + 6t2]S)

=


0 2 0 0
0 1 4 0
0 0 2 6
0 0 0 3

 .
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Letting B = [T ]C , we could calculate B directly:

B = [T ]C = ([T (1)]C | [T (t+ 2)]C | [T ((t+ 2)2)]C | [T ((t+ 2)3)]C)

= ([0]C | [t+ 2]C | [2(t+ 2)2]C | [3(t+ 2)3]C)

=


0 0 0 0
0 1 0 0
0 0 2 0
0 0 0 3

 .

To calculate B using the formula, we have B = P−1AP, where P is the transition matrix
from C to S. First we get the transition matrix:

P = P
S←C

= ([1]S | [t+ 2]S | [(t+ 2)2]S | [(t+ 2)3]S) =


1 2 4 8
0 1 4 12
0 0 1 6
0 0 0 1

 .

I will let you check that P−1 =


1 −2 4 −8
0 1 −4 12
0 0 1 −6
0 0 0 1

 . Given this, we should have

B =


1 −2 4 −8
0 1 −4 12
0 0 1 −6
0 0 0 1




0 2 0 0
0 1 4 0
0 0 2 6
0 0 0 3




1 2 4 8
0 1 4 12
0 0 1 6
0 0 0 1



=


1 −2 4 −8
0 1 −4 12
0 0 1 −6
0 0 0 1




0 2 8 24
0 1 8 36
0 0 2 18
0 0 0 3



=


0 0 0 0
0 1 0 0
0 0 2 0
0 0 0 3

 .

As you should notice from this example, the columns of P are eigenvectors of A, and P is
a diagonalizing matrix for A. One of the aspects of linear operators is that they have eigen-
vectors and eigenvalues, just like matrices. We say c is an eigenvalue for a linear operator T
if there is a nonzero vector v in V with T (v) = cv. Similarly, we call v an eigenvector for T.
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How does one go about finding eigenvectors and eigenvalues for a linear operator? In
differential equations, you studied “differential operators,” which were linear operators on
vector spaces of functions, with differentiation being part of the definition of the operator.
Part of what happened in that class involved finding eigenvectors and eigenvalues for differ-
ential operators. In this class, we relate everything back to matrices. So for the example
above, we calculated the matrix of the transformation. It turns out that the eigenvalues of
a transformation are the same as the eigenvalues for any matrix representing that transfor-
mation. Thus, T had 0, 1, 2, 3 as eigenvalues. What about eigenvectors? The are NOT the
columns of the diagonalizing matrix P. However, the columns of P are the coordinates for

the eigenvectors. So, for this example,


2
1
0
0

 is an eigenvector for the matrix representing T,

and it gives the coordinates for an eigenvector for T. Going from coordinates to the vector,
2
1
0
0

→ 2 · 1 + 1 · t+ 0 · t2 + 0 · t3 = t+ 2.

We define a linear operator T to be diagonalizable if there is some basis B for which
[T ]B is a diagonal matrix. So our example above, T (p(t)) = (t + 2)p′(t) is diagonal-
izable since [T ]B is a diagonal matrix with the basis {1, t + 2, (t + 2)2, (t + 2)3}. Eigen-
value/eigenvector/diagonalizability properties for linear operators are very similar to those
for matrices. For example, here is a good Final Exam question: Prove that if c is an eigen-
value for T, then the set of all v for which T (v) = cv is a subspace of V, the domain space.
That is, prove that the eigenspace is a subspace. The following is the main theorem on
diagonalizability of linear transformations.

Theorem 4 A linear operator T on a finite dimensional vector space V is diagonalizable if
and only if V has a basis consisting of eigenvectors of T.

Here is half of the proof: Suppose that B = {v1, v2, . . . , vn} is a basis for V and each vi
is an eigenvector for T. That is, suppose that T (vi) = civi for each i. The matrix of T
with respect to B is ([T (v1)]B | [T (v2)]B | · · · | [T (vn)]B). That is, we apply T to each basis
vector, get the coordinates of the answer, and make that the appropriate column of the
matrix. Since each vector is an eigenvector, we have ([T (v1)]B | [T (v2)]B | · · · | [T (vn)]B) =
([c1v1]B | [c2v2]B | · · · | [cnvn]B). But the B-coordinates of vi is ei, the i’th standard basis vec-
tor. That is, [T ]B = (c1e1 | c2e2 | · · · | cnen), but this is just the diagonal matrix with c’s on
the diagonal.

For a second example, let’s use matrix spaces: Define T : M2×2 →M2×2 by

T (A) =

(
1 1
1 1

)
A

(
2 1
1 2

)
.

Problem: Find the matrix of T with respect to the standard basis for M2×2, find all eigen-
values of T, a basis for each eigenspace, and finally, find the matrix of T with respect to a
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basis of eigenvectors.

Solution: As an aid to the calculations, let’s first calculate a formula for T (A) in terms
of the entries of the matrix A. We have

T

(
a b
c d

)
=

(
1 1
1 1

)(
a b
c d

)(
2 1
1 2

)
=

(
1 1
1 1

)(
2a+ b a+ 2b
2c+ d c+ 2d

)
=

(
2a+ b+ 2c+ d a+ 2b+ c+ 2d
2a+ b+ 2c+ d a+ 2b+ c+ 2d

)
.

We now apply T to the standard basis vectors:

T

(
1 0
0 0

)
=

(
2 1
2 1

)
, T

(
0 1
0 0

)
=

(
1 2
1 2

)
, T

(
0 0
1 0

)
=

(
2 1
2 1

)
, T

(
0 0
0 1

)
=

(
1 2
1 2

)
.

Getting the standard coordinates of each vector gives

[T ]S =


2 1 2 1
1 2 1 2
2 1 2 1
1 2 1 2

 .

Next, the eigenvalues of T are the same as those for [T ]S. We get the characteristic polynomial
for this matrix:

det(xI − [T ]S) =

∣∣∣∣∣∣∣∣
x− 2 −1 −2 −1
−1 x− 2 −1 −2
−2 −1 x− 2 −1
−1 −2 −1 x− 2

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
x 0 −x 0
0 x 0 −x
−2 −1 x− 2 −1
−1 −2 −1 x− 2

∣∣∣∣∣∣∣∣
(I subtracted the third row from the first and the fourth from the second)

= x2

∣∣∣∣∣∣∣∣
1 0 −1 0
0 1 0 −1
−2 −1 x− 2 −1
−1 −2 −1 x− 2

∣∣∣∣∣∣∣∣ = x2

∣∣∣∣∣∣∣∣
1 0 −1 0
0 1 0 −1
0 0 x− 4 −2
0 0 −2 x− 4

∣∣∣∣∣∣∣∣
= x2

∣∣∣∣x− 4 −2
−2 x− 4

∣∣∣∣ = x2[(x− 4)2 − 4] = x2(x− 2)(x− 6).

Thus, the eigenvalues are 0, 2, 6. Next, we find bases for the eigenspaces of [T ]S. These will
NOT be bases for the eigenspaces for T. I will let you go through the details, but the matrix
[T ]S has eigenspace bases:

0 :



−1
0
1
0

 ,


0
−1
0
1


 , 2 :



−1
1
−1
1


 , 6 :




1
1
1
1


 .
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These give COORDINATES for the bases for the actual eigenspaces of T. That is, if we
convert from coordinate vectors to matrices, we get the actual eigenvectors. These give us

0 :

{(
−1 0
1 0

)
,

(
0 −1
0 1

)}
, 2 :

{(
−1 1
−1 1

)}
, 6 :

{(
1 1
1 1

)}
.

A basis for M2×2 consisting of eigenvectors of T is

B =

{(
−1 0
1 0

)
,

(
0 −1
0 1

)
,

(
−1 1
−1 1

)
,

(
1 1
1 1

)}
.

With respect to this basis, the matrix of T is

[T ]B =


0 0 0 0
0 0 0 0
0 0 2 0
0 0 0 6

 .

You should check that [T ]B = P−1[T ]SP for an appropriate P. As a check on the calculations

above, I will use this second matrix for T to calculate T

(
1 −2
3 2

)
. To do this, we need the

formula [T (v)]B = [T ]B[v]B. We need to write

(
1 −2
3 2

)
as a linear combination of vectors

in B. Calling these vectors b1, b2, b3, b4, we have

(
1 −2
3 2

)
= b1 + 2b2 − b3 + b4, so

[
T

(
1 −2
3 2

)]
B

=


0 0 0 0
0 0 0 0
0 0 2 0
0 0 0 6




1
2
−1
1

 =


0
0
−2
6

 .

This tells us the coordinates of the answer, we need -2(third basis vector) + 6(fourth basis
vector). Thus,

T

(
1 −2
3 2

)
= −2

(
−1 1
−1 1

)
+ 6

(
1 1
1 1

)
=

(
8 4
8 4

)
.

The direct calculation would have been

T

(
1 −2
3 2

)
=

(
1 1
1 1

)(
1 −2
3 2

)(
2 1
1 2

)
=

(
1 1
1 1

)(
0 −3
8 7

)
=

(
8 4
8 4

)
.

One last example. Let V = {(x, y, z) |x + y + z = 0}. That is, let V be a plane in R3. A

basis for V is B = {u, v} =


−1

0
1

 ,

 0
−1
1

 . Let T : V → V be defined by

T (x, y, z) = (x+ 2y, x+ 2z, 0).
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I will leave it to you to show that T really is a linear operator on V. (What this means is
that if w is any vector in V, then T (w) should also be in V. For example, (5, -3, -2) is in V ,
and T (5,−3,−2) = (−1, 1, 0) is also in V.)

The problem: Find the matrix of T with respect to B, find all eigenvalues and a basis for
each eigenspace, and find the matrix of T with respect to a basis of eigenvectors. Implicit
in this problem is that T IS diagonalizable.

Note that even though T is defined in terms of vectors in R3, the matrix of T will be a
2 × 2 matrix. That is, it is the size of the basis (the dimension of V ) that determines the
size of the matrix. To get the matrix of T, we apply T to each basis vector and write than
answer as a combination of basis vectors. We have

T (u) = (−1, 1, 0) = u− v, T (v) = (−2, 2, 0) = 2u− 2v.

Getting the coordinates for T (u) and T (v), we put these in as columns in the matrix:

[T ]B =

(
1 2
−1 −2

)
= A.

The eigenvalues of T are the same as the eigenvalues of [T ]B, so

det(xI − [T ]B) =

∣∣∣∣x− 1 −2
1 x+ 2

∣∣∣∣ = (x− 1)(x+ 2) + 2 = x2 + x.

The eigenvalues of T are 0 and -1. For 0, we have

(
1 2
−1 −2

)
⇒
(

1 2
0 0

)
, giving a basis{(

−2
1

)}
. For -1, A + I =

(
2 2
−1 −1

)
⇒
(

1 1
0 0

)
, giving a basis

{(
−1
1

)}
. These are

not eigenvectors for T, but they are the coordinate vectors for the eignevectors. The corre-
sponding eigenvectors for T are −2u + v = (2,−1,−1) and −u + v = (1,−1, 0). Since V is
2-dimensional, and these come from different eigenspaces, they must be a basis for V. So we

have found our basis of eigenvectors: C =


 2
−1
−1

 ,

 1
−1
0

 = {w1, w2}. Finally, we calcu-

late the matrix of T with respect to C: T (w1) = 0, T (w2) = −w2, so [T ]C =

(
0 0
0 −1

)
. Based

on all we’ve done, the matrix

(
1 2
−1 −2

)
should be similar to

(
0 0
0 −1

)
. It is, of course,

using P =

(
−2 −1
1 1

)
, which has inverse P−1 =

(
−1 −1
1 2

)
. That is, P−1AP =

(
0 0
0 −1

)
,

which we could write
[T ]C = P−1[T ]BP,

and interpret either as (1): P is the matrix with eigenvectors of A as its columns, or (2): P
is the transition matrix P

B←C
.
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One final comment. Not all linear operators are diagonalizable. For example, the linear
operator T : P2 → P2 defined by T (p(t)) = p(t + 1) is not diagonalizable. This T is
sometimes called a shift operator. As an example, T (t2 + 2t+ 3) = (t+ 1)2 + 2(t+ 1) + 3 =
t2 + 2t+ 1 + 2t+ 2 + 3 = t2 + 4t+ 6. You should be able to verify the following: The matrix

of T with respect to the standard basis of P2 is [T ]S =

1 1 1
0 1 2
0 0 1

 , and this matrix has

only one eigenvalue (λ = 1), and only a 1-dimensional eigenspace. Since the matrix is not
diagonalizable, neither is T.
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