Class misc.Utilities
public class Utilities {}
This class contains all the utility functions used by individual
programs.
Constructor Index:
Method Index:
- static int gcd( int a, int b )
- This computes the greatest common divisor of a and b.
- static boolean isprime( int p )
- This checks whether p is a prime number.
- static void swap( int[] arr, int i, int j )
- This swaps the `i'th and `j'th values of arr[]. This is used
by the sort()
- method defined below.
- static void sort( int[] arr, int low, int high )
- This sorts the array arr between low and high.
- static int order_in_Ugroup( int elt, int n )
- This returns the order of the element elt in U(n). Returns
-1 if there is an
- error.
- static int order_in_Ugroup( int elt, int n, vector vals )
- This returns the order of the element elt in U(n) and
stores the group
- generated by elt in the vector vals. Returns -1 if there
is an error.
- static int order_in_Zgroup( int elt, int n )
- This returns the order of elt in Zn. Returns
-1 if there is an error.
- static boolean is_in_Ugroup( int elt, int n )
- This checks whether elt is in U(n).
- static boolean is_identity_in_ZxZ( int M, int N, Ordered_pair op
)
- This checks whether the element op is the identity element in
ZM + ZN.
- static int Order_in_ZxZ( int M, int N, Ordered_pair op )
- This returns the order of op in ZM + ZN.
Returns -1 if there is an error.
- static boolean is_in_ZxZ( int M, int N, Ordered_pair op )
- This checks whether op is in ZM + ZN.
- static void prime_factorization( vector vect, int number )
- This gives the prime-factorization of the integer 'number' and stores
it in
- the vector 'vect' as algebra.Ordered_pairs. Where the first
component of
- the Ordered_pair is the prime number and the second component is
the power
- of that prime_number.
- static void partitions( int n, vector vect )
- This computes the partitions of the integer 'n' and stores them
in a vector as an
- array of integers.
- static void GxG( int n, vector G1, vector G2, vector G1XG2)
- This computes the internal direct product of G1 and G2 and stores
it in G1XG2.
- Also, it is assumed that both G1 and G2 are subgroups of U(n).
algebra Package / misc
Package / Making of the project
/ Project Home Page / My
Home Page