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A = {2,−1,−1}
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2 4 1 1
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∗ 2 −1 −1
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−1 −2 1 1

−1 −2 1 1

Are there any other examples where A+A = A ∗A (as a multi-set)?
Yes! A = {0, 0, . . . , 0} or A = {2, 2, . . . , 2}

Are there any other nontrivial examples?

What does this have to do with this talk?



Graphs are collections of objects
(vertices) and relations between
them (edges).
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Graphs are very universal and
can model just about everything.

Matrices are arrays of numbers
with benefits.

A =


0 1 1 1

1 0 1 0

1 1 0 0

1 0 0 0


Example: eigenvalues are λ
where for some x 6= 0 we have
Ax = λx.

{2.17..., 0.31...,−1,−1.48...}
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GRAPH ←→ MATRIX −→ EIGENVALUES←−
Spectral Graph Theory
What are relationships between the structure of a given graph and the
eigenvalues of a matrix associated with the graph.



Common matrices

• Adjacency, A: Matrix indicates which vertices are adjacent.
Eigenvalues can count closed walks, so can count edges and test
bipartite-ness.

• Laplacian, L = D−A: Derived from signed incidence matrix, is
positive semi-definite. Eigenvalues can count edges and number of
components.

• Signless Laplacian, Q = D+A: Derived from unsigned incidence
matrix, is positive semi-definite. Eigenvalues can count edges and
number of bipartite components.



Little less common matrix

• Normalized Laplacian, L “ = ”D−1/2(D−A)D−1/2 : Normalizes the
Laplacian matrix, and is tied to the probability transition matrix.
• Eigenvalues lie in the interval [0, 2].
• Multiplicity of 0 is number of components.
• Multiplicity of 2 is number of bipartite components.
• Tests for bipartite-ness.
• Cannot always detect number of edges.



Summarizing

bip. # comp. # bip. comp. # edges

A YES no no YES
L no YES no YES
Q no no YES YES
L YES YES YES no



Cospectral pairs

Cospectral for A Cospectral for L

Cospectral for Q Cospectral for L



Normalizing is good!
Theorem |x∗By| ≤ σ(B)‖x‖‖y‖.

Discrepancy for a d-regular graph is the minimum α so∣∣∣∣e(X, Y) − d

n
|X||Y|

∣∣∣∣ ≤ α√|X||Y|.

(Discrepancy measures randomness of edge placement.)

Theorem (Alon-Chung)
Discrepancy is bounded above by σ2(A).

Proof. Set x = 1X, y = 1Y , and B = A− d
n
J (i.e., subtract out largest

eigenvalue) and use preceding result.



Normalizing is good!

What about non-regular graphs?
funnycatpix.com google.com

A has a vertex-centric measure of size. L has an edge-centric measure of
size (vol(X) =

∑
v∈X dv).

Theorem (Chung) For G a graph and X, Y ⊆ V :∣∣∣∣e(X, Y) − vol(X)vol(Y)
vol(G)

∣∣∣∣ ≤ σ2(D−1/2AD−1/2)
√

vol(X)vol(Y).

Proof. Set x = D1/21X, y = D1/21Y , and B = D−1/2AD−1/2 − 1
vol(G)D

1/2JD1/2

(i.e., subtract out largest eigenvalue) and use preceding result.

funnycatpix.com
google.com


Using weighted graphs

Let w(u, v) be the weight of the edge between u and v and
d(u) =

∑
vw(u, v). If we let Au,v = w(u, v) and D(u, u) = d(u), then

L = D−1/2(D−A)D−1/2.

Proposition
Let G be a weighted graph and αG the weighted graph resulting from
scaling the weight of each edge by α. Then LG = LαG.

Proof: Scaling terms cancel out by the normalization.



Harmonic eigenvectors

If Ay = µy, then at each vertex t we have∑
v

w(t, v)y(v) = µy(t).

Let Lx = λx and let x = D1/2y (y is known as the harmonic eigenvector).
Then (D−A)y = λy, or Ay = (1− λ)Dy, or at each vertex t we have∑

v

w(t, v)y(v) = (1− λ)d(t)y(t).

1 is harmonic eigenvector for λ = 0. All other harmonic eigenvectors y
satisfy

∑
d(u)y(u) = 0.



Graph operations
The Cartesian product of G and H, denoted G�H, the tensor product of G
and H, denoted G×H, and the strong product of G and H, denoted G�H,
all have vertex set {(a, b) : a ∈ V(G), b ∈ V(H)} and edge sets respectively
as follows:

E(G�H) =
{
{(a, b), (c, d)} : a=c and b∼d; or a∼c and b=d

}
E(G×H) =

{
{(a, b), (c, d)} : a∼c and b∼d

}
E(G�H) = E(G�H) ∪ E(G×H).

The join of G and H, denoted G∨H, is the graph formed by taking the
disjoint union of G and H and then adding an edge between every vertex
in G and every vertex in H.



L and graph operations
Proposition
There is no way to determine the spectrum of L for the graphs G�H,
G�H or G∨H by only knowing the spectrum of L of G and H.

(a) K2,2 �K2 (b) K1,3 �K2 (c) K2,2 �K2

(d) K1,3 � K2 (e) K2,2 ∨K2 (f) K1,3∨K2



L and graph operations

If G and H are regular then we can easily compute eigenvalues of G�H
and G�H using known facts about adjacency matrix. (For regular graphs
we can easily go from the spectrum of one matrix to another.)

Theorem
Eigenvalues of G×H are

{
λ+ µ− λµ

}
where λ ranges over all eigenvalues of G

and µ ranges over all eigenvalues of H.



L and joins

Theorem
Let G be an r-regular graph on n vertices with eigenvalues {λi} and let H be an
s-regular graph on m vertices with eigenvalues {θj}. Then the eigenvalues of
G∨H are {

0, 2−
r

m+ r
−

s

n+ s

}
∪
{
m+ rλi
m+ r

}
∪
{
n+ sθj
n+ s

}
.

General idea
When a “regular” subgraph cones to the rest of the graph, we can extract
eigenvalues from the subgraph and then collapse it to a vertex.



Twin vertices

In a weighted graph, two (non-adjacent) vertices u and v are twins if for
every vertex x

w(u, x) = w(v, x).

(In simple graphs, this translates as having the same neighbors.)

u v w



Über vertices
In a weighted graph a pair of twins can be used to construct (harmonic)
eigenvector for eigenvalue 1. Suppose that u and v are twins then

y = 1u − 1v

satisfies at each vertex t∑
v

w(t, v)y(v) = 0 = (1− 1)d(t)y(t).

Observation
Remaining eigenvectors have same values at u and v. So treat u and v as a
single über-vertex uv (edge weights summed).



Collapsing twins

• A set of k mutual twins will contribute 1 to the spectrum k− 1 times.
We then “collapse” the set of k vertices into a single über-vertex and
appropriately adjust the edge weights.

• After collapsing each set of twins we now have a weighted graph and
the remaining eigenvalues are found using this smaller graph.

Theorem
If two graphs collapse to graphs which differ by scaling and in each graph
we removed the same number of “twins”, then the graphs are cospectral.
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Another example
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Cospectral with subgraph!

With differing number of edges it is theoretically possible to be cospectral
with a subgraph.

×(k+ 1)

×k ×k

×(k+ 1)

×k ×k



After removing twins

k k

k+ 1 k+ 1

1

k2

k k

k+ 1 k+ 1

1

Not just simple rescaling!

Characteristic polynomial for both graphs is:

x5 −
6k2 + 8k+ 3

4(k+ 1)2
x3 −

1

4(k+ 1)
x2 +

k(2k+ 1)

4(k+ 1)2
x



A construction

For any circular word in P and C we can form a graph by gluing in a
circular chain P4’s and C4’s. For example PPCCPPPC and CCPPCCCP are:

Theorem (B-Heysse) Changing all P↔C does not effect the spectrum of L



Kemeny’s constant and L

Kemeny’s constant, denoted K(G), is the expected first passage time from
an unknown starting point to an unknown destination point.

Theorem (Levene-Loizou)
If ρn−1 ≤ · · · ≤ ρ1 < ρ0 = 1 are eigenvalues of transition matrix D−1A then

K(G) =

n−1∑
i=1

1

1− ρi
.

If 0 = λ0 < λ1 ≤ · · · ≤ λn−1 are eigenvalues of L then K(G) =
n−1∑
i=1

1

λi
= −

c2

c1

where pL(t) = tn + · · ·+ c2t2 + c1t.



Kemeny’s constant and L

To compute Kemeny’s constant it suffices to compute the last two nonzero
terms of characteristic polynomial of L. In some cases this can be done by
collapsing twins and using recursion.

Let G be the graph on n = 3` vertices consisting of two cliques on `
vertices joined by a path on ` vertices. Then

K(G) =
n6 + 3n5 + 69n4 − 243n3 + 837n2 − 3159n+ 5832

54(n3 + 9n)

=

(
1+ o(1)

)
n3

54
.



Still much to do!

Many things are still unknown about the normalized Laplacian. In
addition to having differing number of edges, it is possible for regular
graphs to be cospectral with non-regular graphs.



A+A = A ∗A{
2,

√
5− 1

2
,

√
5− 1

2
,
−
√
5− 1

2
,
−
√
5− 1

2

}
• For the adjacency matrix the eigenvalues of G�G are all possible

sums of eigenvalues.

• For the adjacency matrix the eigenvalues of G×G are all possible
products of eigenvalues.

• C2k+1�C2k+1 ∼= C2k+1 × C2k+1.
• Take A to be the eigenvalues of the adjacency matrix for an odd cycle:

A =

{
2 cos

2πk

2k+ 1
: k = 0, 1, . . . , 2k

}
.



Which is bigger? They’re equal!

The number of ways to build the
following pyramid with any
combination of 1×k or k×1
rectangles.

The number of ways to color the
following pyramid white and
green so that no two green
squares share an edge.
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