MIDTERM TOPIC LIST Dynamical Systems Math 5260 Bruce Peckham October 14, 2007 For midterm on Fri. Oct. 26, 2007: 8:30-9:50

In general, the midterm will cover any topics we covered in Chapters 1-12. The focus will be on "basic" material. Homework type questions from previous assignments will be emphasized. I will attempt to make the problems noncomputationally intensive. The following list of topics should give you a more specific idea of what kinds of questions will be asked.

- 1. Definitions to know:
 - Fixed point, periodic point, orbit, cycle, period, prime or least period
 - Attracting, superattracting, repelling, neutral periodic point (orbit, cycle); use of chain rule in determining these adjectives
 - Phase portrait
 - Graphical analysis
 - Discrete dynamical system vs. continuous dynamical system
 - Bifurcation, incl. esp. saddle-node and period doubling (nondegeneracy conditions not necessary to memorize)
 - The sequence space Σ , the "usual" metric on Σ , the shift map σ .
 - Three properties of a chaotic system and all terminology used in the def. of the properties.
 - A dense in B for $A \subset B$.
 - Homeomorphism, topological conjugacy, topological semiconjugacy
- 2. Results to know:
 - Relationship between the shift map on the symbol sequence space and the quatratic map (for small enough c) on the invariant Cantor set.
 - Sarkovkii's theorem, including Sarkovskii's ordering
 - "Negative Schwarzian Derivative Property" (which is true for any quadratic): Any attracting periodic orbit must attract a critical point.

- 3. Techniques to know:
 - Locating fixed and periodic pts/orbits analytically (for individual maps and for families of maps)
 - Locating period-*n* pts/orbits of f from graphs of f and f^n .
 - Interpreting orbit diagrams (identifying, for example, parameter values corresponding to maps with attracting orbits of a certain period, or saddle-node bifurcations or period-doubling bifurcations)
 - Determining stability of periodic orbits either analytically or from graphs.
 - Constructing a graph of f so that f has, for example, a periodic orbit of a certain period and certain derivative (of f^n).
 - Constructing the graph of iterates of f given the graph of f.
 - The construction of the invariant Cantor set Λ for $x^2 + c$ with c small enough.
 - The construction of an itinerary map.
 - Given a map and a change of variables, find the equation for the map in the new variables.
 - Recognizing a saddle-node and/or period doubling bifurcation from a sequence of graphs of a family of maps as a parameter changes
 - Determining the number of prime periodic orbits of each period for $x^2 - 2$ (equivalently $2x \pmod{1}$, 4x(1-x), σ)
 - Determining the number of period-*n* windows for each *n* in the orbit diagram for the family $x^2 + c$.
 - Locating each period-*n* window in the orbit diagram for the family $x^2 + c$.
- 4. Proofs to know:
 - f continuous, I closed interval, $f(I) \subseteq I$ or $f(I) \supseteq I$ implies there is a fixed point for f in I.
 - f continuous, f has a periodic point implies f has a fixed point
 - Prove $\sigma: \Sigma \to \Sigma$ is chaotic. (Prove any or all 3 properties.)
- 5. Anything else we've covered that I think is easy.