Math 3280, Differential Equations with Linear Algebra<br>Prof. Bruce Peckham, Instructor, Fall 2010<br>Brief Topic Summary for Test 2

Differential Equations:

1. Analytic Solutions (Sections 5.1, 5.2)
(a) Structure of general solution to $y^{\prime}+p(x) y=q(x): y(x)=y_{c}(x)+y_{p}(x)=c_{1} y_{1}(x)+y_{p}(x)$.
(b) Structure of general solution to $y^{\prime \prime}+p(x) y^{\prime}+q(x) y=r(x): y(x)=y_{c}(x)+y_{p}(x)=$ $c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$.
(c) Finding $y_{1}(x)$ and $y_{2}(x)$ for $a y^{\prime \prime}+b y^{\prime}+c y=0$ (constant coefficient linear, homogeneous - if the characteristic polynomial has real distinct or real repeated roots).
(d) Using initial conditions, solve for $c_{1}$ and $c_{2}$ for second order linear differential equations.
(e) Linear independence of $y_{1}$ and $y_{2}$. Use of Wronskian as a shortcut. More generally, linear independence of $n$ functions.
2. Qualitative Solutions (labs - not on test)
3. Numerical Solutions (labs - not on test)
(a) ANY!!!!: Euler's method (Runge-Kutta, ...)
4. Models (labs - one question might be on test)
(a) Exponential growth (population), decay (radioactive decay)
(b) Heating/Cooling
(c) Falling object/parachute
(d) Mixing
(e) Logistic population growth

Linear Algebra (Secs 3.1-3.6, 4.1-4.4, 4.7)

1. Solve $A x=b$ (Row reduction, row echelon form, reduced row echelon form and interpretation of row reduced matrices for no solution, unique solution, infinity of solutions, number of free parameters)
2. For $A$ an $n \times n$ matrix: Compute $\operatorname{Det}(A), A^{-1}$ using row reduction
3. if $\operatorname{Det}(A) \neq 0, A^{-1}$ exists and there is a unique solution to $A \mathbf{x}=\mathbf{b}$
4. Vector Space/subspace, basis, linearly independent/dependent - including formal equations that must be satisfied to be dependent, span - including formal equations that must be satisfied for a given set of vectors to to span a (sub)space, dimension
5. Vector space examples: $\Re^{2}, \Re^{3}, \Re^{n}, M_{m \times n}, F$.
6. Vector subspace examples:
(a) in $\Re^{n}$ : origin, lines through origin, (hyper)planes through the origin, solutions to $A \mathbf{x}=$ 0.
(b) in $F$ : solutions to $y^{\prime}+p(x) y=0$ ( 1 dimensional) or $y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0$ (2 dimensional).
(c) in $M_{n \times n}$ : Diagonal matrices, ...
(d) in any vector space: linear combinations of any set of vectors
(e) Proof of a subset being a subspace (closed under vector addition and scalar multiplication) vs. example showing a subset is not a subspace
(f) Shortcuts if you know the dimension of a vector (sub)space is n : any set of more that $n$ vectors must be linearly dependent; no set of fewer than $n$ vecors can span the space.
