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a b s t r a c t

This paper presents a real-time embedded framework for finger force control of upper extremity
prostheses. The proposed system is based on the hypothesis that models describing the finger force and
surface Electromyographic (sEMG) signal relationships of healthy subjects can be applied to amputees. An
identification/estimation scheme is applied to the collected sEMG and finger force signals in order to infer
dynamical models relating the two. A LQG control law is proposed based on this estimation scheme in
order to control finger forces of upper extremity prostheses. For the force estimation, filtered sEMG signals
from a sensor array and finger force data of a healthy subject are acquired. Real-time estimation and
control are implemented using a PIC32MX360F512L microcontroller. In this paper, a novel fusion
technique, the Optimized Linear Model Fusion Algorithm (OLMFA) is developed for estimating the skeletal
muscle force from the sEMG sensor array in real-time. The sEMG signal is rectified and filtered using a
Half-Gaussian filter, and fed to the OLMFA based Multiple Input Single Output (MISO) force model. This
MISO system provides the estimated finger force as reference input to the upper extremity prostheses in
real-time. A LQG controller is designed to control the finger force of the prostheses utilizing the force
estimate from the OLMFA as a reference. Both the OLMFA and the LQG control scheme are prototyped on
the embedded framework for testing of the real-time performance. The proposed embedded framework
features rate partitioning and UART interface for performance validation and troubleshooting. The OLMFA
based force estimation yields a real-time performance of 85.6% mean correlation and 20.4% mean relative
error with a standard deviation of 71.6 and 71.5 respectively for 18 test subject’s k-fold cross validation
data. The LQG control algorithm yields a real-time performance of 91.6% mean correlation and 9.2% mean
relative error with a standard deviation of 71.4 and 71.3 respectively.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

According to the information provided by the National Limb
Loss Information Center (Aca News: National Limb Loss Awareness

Month, 2011), the number of people with missing limbs in the
United States is over 1.7 million due to combat and non-combat
manoeuvres. The recent wars in Afghanistan and Iraq substantially
increased the number of amputees; “at least 251,102 people have
been killed and 532, 715 people have been seriously wounded”
(Causalities in Afghanistan & Iraq, 2006). About 57% of them are
trans-radial amputees (Causalities in Afghanistan & Iraq, 2006;
Ziegler-Graham et al., 2008; Esquenazi and Meire, 1996; Merrill
et al., 2011), about 80% of amputees use prosthetic devices (Biddiss
and Chau, 2007) and around 30–50% of amputees are using
myoelectric controlled devices (Kyberd and Hill, 2011).

Research in the field of prosthetic limbs was initiated in response to
casualties during World War II by the United States National Academy
of Sciences (Clynes andMilsum,1970). The first EMG based control was
developed by Wiener (1948). Advancements in the processors used in
the prostheses have led to remarkable progress in nonindustrial
robotics such as developing prosthetic devices for individuals who
have sustained hand amputation. In nonindustrial robotics,
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‘rehabilitation robotics’ has been an active research area for the past
two decades. Rehabilitation robotics is human-centered and addresses
a different set of requirements such as mechanical compliance,
flexibility, adaptability towards the user, gentleness, safety and, last
but not least, humanoid appearance and behavior (Zinn et al., 2004).
Past research stipulates that human-centered robotics must be auton-
omous with a high level of functionality, pleasure, comfort and ease of
use (Bien and stefanoy, 2004). One interesting domain of rehabilitation
robotics is human-machine interface. Human-centered robotics
requires a natural means of communication (Heinzmann and
Zelinsky, 1999) and, in the case of EMG based prostheses, one natural
means of interface between the human arm and prosthesis is the
surface Electromyographic (sEMG) signal itself. The sEMG signals are
electrical voltages ranging less than 50 μV and up to 20–30mV (Raez
et al., 2006). The sEMG signals are always available when sufficient
muscle tissue exists. The signal’s strength and variability depends on
different movements and force levels. sEMG signals are acquired using
suitable sensors and are used as an input to the control scheme of the
hand prostheses in order to control the movements and forces applied
by the prosthetic fingers. As sEMG signals are collected from the
surface of the skin, the signals pass through numerous tissue layers
before they reach the skin surface where they can be acquired by the
EMG sensors (Cram et al., 1998). Hence, the signals are prone to cross-
talk, interference and noise. For this work these EMG signals are
acquired using a Delsys Bagnoli-16 system. The acquired signals
are rectified and filtered using Half-Gaussian filter before estimating
the sEMG–force relationship.

To date there are many commercial prostheses available. A few to
name are: the Utah arm 3 from Motion Control (Motion Control, Salt

Lake City, UT, 2011), Myolino wrist by Otto Bock (Otto Bock
Duderstadt, 2011), Bebionic V2 from RSL Steeper (RSL Steeper
Leeds, U.K., 2011), Shanghai Kesheng (Shanghai Kesheng Prostheses,
2011), iLimb from Touch Bionics (2011), and the Boston elbow by
Liberating Technologies Holliston, MA (2011). The Boston elbow
prosthesis has one degree of freedom i.e., elbow flexion. It evaluates
the subject to determine the muscle groups and experiments with
various control strategies until the appropriate one is found (Toledo et
al., 2009). A Motion Control Hand uses a simple proportional
controller based on the slope of the normal feedback force to provide
a more natural feeling based control for hand prosthesis and to avoid
force overshoot (Fougner et al., 2012). The Otto Bock hand uses a
three dimensional force feedback in order to give the directly
proportional relationship between the applied force and user’s input
(Puchhammer, 2000). The unique feature of the iLimb is given by the
ability to add additional force to the object. However, there are some
limitations; for example, heavy tasks execution is impossible because
of the limited power provided by the iLimb. Most of the commercially
available prostheses have predefined gestures/grasping actions which
utilizes real-time classifiers. According to Kaveh et al. (2007) there are
very few real-time classifiers available in the literature which can be
utilized towards hand gesture classification. In Nishikawa et al. (2001)
an adaptive heuristic critic (AHC) real-time algorithm was proposed
for predefined handmovements. Using wavelet analysis, a continuous
classifier was developed for steady-state EMG signals (Englehart et al.,
2001). A real-time pattern recognition algorithm based on K-nearest
neighbors was proposed in Christian et al. (2011). It concludes that
using EMG patterns, hand gestures can be decoded in real-time and
can control an artificial hand.

Nomenclature

A1 mother chromosome
A2 father chromosome
BðqÞ and FðqÞ polynomials
Bwk matrix associated with the plant noise wk of n� n

dimension
Ff fitness function
Fk system matrix of n� n dimension
Fkf n� n positive semi-definite matrix
F0ðtÞ controlled force output
GðqÞ transfer function providing the dynamic relationship
Gk control matrix of n� r dimension
H highest number in parameter range
HðsÞ MISO transfer function
Hk output matrix of p� n dimension
J cost function
L lowest number in parameter range
l percentage load on the PIC
M1;M2 and M3 estimated models from the sEMG sensor data

u1ðtÞ; u2ðtÞ and u3ðtÞ—and the corresponding skeletal
muscle force

MR mutation rate
NIP population size of generations
NPA number of sensors
NPM number of parameters to be mutated
Pek n� n state estimation covariance error matrix
Qk and Rk covariance matrices associated with plant noise wk

and measurement noise vk respectively.
TNP total number of parameters
YðtÞ skeletal muscle force
Ŷ f fused force output
Ŷ i estimated force

b; f coefficients
eðtÞ error
f ;h nonlinear functions
gi low-pass filter with impulse response
hi high pass filter
hj individual’s cumulative probability
i corresponding sensor
n number of data points
nk system delay
nb;nf row vectors
os1; os2 off springs
pi order of particular model
p1; p2;…; pN chromosomes
pd PWM wave with specific duty cycle
~pj jth probability to be selected.
q back shift operator
uk selected control strategy
t time index
t0; tf initial and final time
uk control vector of r dimension
vk measurement noise of p dimension
x latent driving signal
xk state vector of n-dimension at any instant k
xk f n� n state vector at final instant kf
yk output vector of p dimension
α expected rate of gradual drift
β expected rate of sudden shift in the signal
βGA random number on the interval [0, 1]
λ;υ weighing coefficients
μ steady state population
ϑ is the proportion of a generation population kept for

the mating process
sEMGj j rectified EMG signal
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The use of real-time classification algorithm cannot detect the
small changes in the sEMG and react to fine finger force control.
Past research indicates that the typical approach to the control of a
prosthetic hand is to use a data driven sEMG force estimation
combined with the hybrid position and force control (Railbert and
Craig, 1981). There are several interpretations of the sEMG–force
relationship. The sEMG–force estimation research has been
ongoing since the 1950s (Schwartz, 2012). A very common and
standard method for sEMG–force estimation is adopting a Hill
model which utilizes Vander Waals equation (Mitsuhiro and
David, 2013). The main drawback of the Hill model is that the
estimation errors will be large at different firing frequencies, levels
of activation, and speed of muscle contraction. Another common
approach (Mitsuhiro and David, 2013; Istenic et al., 2007) to the
sEMG–force estimation problem is using a physiological model
achieved by combining a motor unit twitch model with motor unit
pulse trains obtained from the multi-channel sEMG.

In the present work, a data driven methodology based on system
identification (SI) is investigated. In particular, a linear Output Error
(OE) model for the sEMG–skeletal muscle force estimation problem
is adopted. We also utilized an array of sensors and developed a
Genetic algorithm based Optimized Linear Model Fusion Algorithm
(OLMFA) for the better estimation of skeletal muscle force from the
corresponding sEMG signals of the sensor array. This kind of a data
driven approach provides better EMG/skeletal muscle force estima-
tion when compared to real-time classifiers even for smaller
muscular contractions. Therefore, skeletal muscle force estimation
based on the sEMG data is utilized as reference force profile for the
prostheses finger force control. A real-time embedded test bed and
an intelligent control system is essential for this design to accom-
plish its goals. Such a control system combines hardware and
software components to balance the computational, electrical and
mechanical workloads across the system.

The proposed work utilizes a discrete time Linear Quadratic
Gaussian (LQG) controller, a combination of the Linear-Quadratic
Estimator (LQE) and Linear-Quadratic Regulator (LQR), and is imple-
mented on an embedded framework to control the movements and
force of a prosthetic hand prototype with force feedback to the
controller. The LQE (Kalman filter) is used extensively in biomedical
applications that involve non-linear dynamic models for noise-
corrupted measurements which need to be monitored and controlled
continuously, because it produces output values close to the true
values of the measurement (Widjaja et al., 2008). For instance, a
Kalman filter is used for filtering the noisy Electro Cardiogram (ECG)
signal (Sameni et al., 2005) to remove environmental noise and
artifacts from the signal. A two-stage Kalman filter, i.e. an LQG
scheme, is designed for estimation and control of real-time human
body motions (Kwang-Hoon et al., 2008; Xiaoping and Eric, 2006). In
this paper we proposed a LQG control scheme along with an
embedded framework for the real-time state estimation and control
the force of a prosthetic hand. The input to the real-time control
system is a fusion-based force estimate. A two-stage embedded

framework design with an LQG controller is chosen for the force
control of the prosthetic hand prototype. The proposed LQG control
strategy is a semi-autonomous control system which maintains the
estimated skeletal muscle force from the fusion algorithm, with the
help of the prosthetic hand fingers, evenwithout a bio feedback. Since
the proposed control strategy has a fine force control, it can grasp
irregular and sensitive objects with ease. This paper also details the
embedded framework for real-time estimation and control of the
finger force based on the sEMG signals. The block diagram in Fig. 1
gives a brief insight into the paper outline.

A detailed comparison of the fusion algorithm based LQG, Model
Reference Adaptive Control (MRAC) (based on MIT rule) (Karl and
Bjorn, 2008) schemes and the performance of the embedded frame-
work in terms of correlation accuracy and the percentage load on the
microcontroller for 18 test subjects are presented in this paper. In
addition, the fusion algorithm is compared with the existing literature
(Lopez et al., 2009) Variance Weighted Average (VWA) and Decen-
tralized Kalman Filter (DKF) based data fusion algorithms. LQG control
strategy and the embedded framework design are also compared with
state of the art existing work, such as adaptive heuristic critic (AHC)
real-time algorithm and a real-time K-nearest neighbor’s pattern
recognition algorithm (Nishikawa et al., 2001; Englehart et al., 2001;
Christian et al., 2011).

A non real-time version of the proposed fusion algorithm is
presented in Potluri et al. (2010). A simulation based (non-real-
time) Linear Quadratic Regulator (LQR) is schemed for the finger
force control and tested on a mathematical model of the hand (not
the real prosthetic hand) (Potluri et al., 2011). The authors utilized
their previous work (Potluri et al., 2010, 2011) as a proof of concept
before implementing concepts real-time. The main objective of the
presented work is to create a real-time embedded framework for
the fusion algorithm and LQG control scheme for rigorous real-
time performance testing based on 18 different subject’s k-fold
cross validation data. Therefore, the embedded framework will
achieve the following rapid prototyping requirements for the
prosthetic hand technology development.

1. It should be able to accurately estimate and control skeletal
muscle force based on the sEMG data of the subjects.

2. The estimation and control of the skeletal muscle force has to
be achieved in real-time. Therefore all the computation should
be performed without any over-run's with a reasonable load on
the micro-processor.

2. Experimental set-up

The experimental set-up used to acquire the sEMG and its
corresponding skeletal muscle force signals is as shown in Fig. 2.
The experiments were conducted on 18 healthy subjects (mean
age of 27.3 years, Standard Deviation (SD) of 2.1; 5 women and 13
men). The subject’s skin surface is prepared in accordance with the

( , , )
sEMG

Skeletal 
Muscle 
Force

Half-Gaussian

Chebyshev
Type- II

Output 
Error(OE)

OLMFA

Linear 
Quadratic 
Gaussian 
(LQG)

Prosthetic 
Hand

1 2 3

4 5

Fig. 1. Block diagram representation of overall proposed scheme. Data acquisition block represents the acquisition of the sEMG and the skeletal muscle force signals. The
signal preprocessing block represents the various filtering techniques used in this work. The system identification (SI), the data fusion algorithm and the Controller blocks
represent the SI techniques, the data fusion and control algorithms employed in this work. (1.) Data Acquisition (2.) Signal Processing/Filtration (3.) System Identification (4.)
Data Fusion (5.) Controller
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International Society of Electrophysiology and Kinesiology (ISEK)
protocols (Merletti, 1999). Using a muscle point stimulator (Rich-
Mar Corporation, model number HV 1100), the motor point
locations of the Flexor Digitorum Superficialis (FDS) and the
appropriate EMG electrode attachment points of the subjects were
identified. The forearm of each subject’s dominant hand is used.
The Flexor Digitorum Profundus (FDP) is also involved in the
action of finger flexion, but it lies deeper than the FDS and hence
the sEMG capturing includes both muscles in the finger motion.
During the data acquisition, each subject is requested to keep the
wrist at neutral position and flex only the index finger while
keeping fingers III–V stationary. Three sEMG sensors are mounted
on the skin surface of the test subject’s dominant hand as shown
in the figure. One sEMG sensor is placed on the motor point and
the other two sensors are placed adjacent to the motor point at a
distance of 1.5 cm on either side of the sensor on the motor point.

A Delsyss, Bagnoli-16 channel EMG, DS-160, S/N-1116 system is
used to capture the EMG data from the skin surface. This data
acquisition system has an internal amplification gain of 1000 and a
bandwidth of 20–450 Hz and line voltage isolation of 6000 VDC,
4200 VAC (RMS). The sEMG signals are acquired by mounting
pronged DE 2.1 differential surface electrodes and a reference
electrode on the subject’s elbow (〈http://www.delsys.com/
Products/Bagnoli_Desktop.html〉). A model 402 single zone Force
Sensitive Resistor (FSR) optimized for human touch control of
electronic devices is used to obtain the finger contact force from
each finger. It has a 46.7 mm2 active diameter area with a force
sensitivity range of 0.1–100 N, force repeatability of 76% and a

continuous force resolution (Interlink Electronics). During data
acquisition each subject is requested to perform a random grasping
action (index finger flexion and extension) for duration of 9–10 s
with a moderate force production to avoid fatigue using a stress ball
for added resistance. While doing so, the random grasping action
finger force is applied on the FSR, which is mounted on the stress
ball by the index finger distal phalanx. Both the sEMG and the
corresponding skeletal muscle force are acquired simultaneously
using NI LabVIEW™ with a single data acquisition board (DAQ NI
6024E) at a sampling rate of 2000 Hz. Since the content of the sEMG
signal is in the range of 20–450 Hz, the sampling rate is set at more
than twice the range of the Nyquist frequency.

For the implementation of the proposed control and estimation
scheme, a simple prosthetic hand prototype is used that has one
controllable finger, as shown in Fig. 3. The prosthetic hand
prototype finger has three degrees of freedom and is actuated by
two Pololu 35:1 mini metal gear motors and a bevel gear
transmission system. The main characteristic of this prosthetic
prototype is its biologically inspired parallel actuation system,
which is based on the behavior/strength space of the Flexor
Digitorum Profundus (FDP) and the Flexor Digitorum Superficialis
(FDS) muscles (Anthony et al., 2010).

Fig. 3 shows the actuation scheme of the prototype finger. The
DC motor in the proximal phalanx of the finger actuates the
Proximal Inter Phalangeal (PIP) joint and through the belt trans-
mission system, the motor also drives the Distal Inter Phalangeal
joint DIP. The DC motor at the metacarpus actuates the Meta Carpo
Phalangeal (MCP) joint.

Fig. 2. Experimental design for sEMG and the skeletal muscle force acquisition.

Fig. 3. Actuation scheme for the prototype finger.
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3. Methodology

The main objective of the two-stage embedded control scheme
is to track the estimated force signal as closely as possible for the
prosthetic hand finger. In this work, the force signal is deduced
from sEMG signals obtained from the array of the three sEMG
sensors located at the arm. The sensor fusion algorithm (OLMFA) is
used to provide the best finger force estimation from the pre-
processed sEMG data. Using a simple elitism based genetic algo-
rithm (GA), sensor fusion is achieved for the sEMG data.

3.1. Filtration

The sEMG data from the three sensors are collected around
each corresponding individual motor point at the trans-radial arm
location (Flexor Digitorum Superficialis). As the motor point
location is approximated for the sEMG sensor placement, the
sEMG sensor picks up a significant portion of EMG from the motor
point. The data is rectified and filtered using a Half-Gaussian filter
before being fed into the fusion algorithm to eliminate the cross-
talk (Anugolu et al., 2009). Cross-talk exists due to the simulta-
neous firing of different motor points. The half-Gaussian filter is
given as follows:

PðsEMGj xÞ ¼ 2�
exp �sEMG2=2x2

� �
ffiffiffiffiffiffiffiffiffiffiffi
2πx2

p ð1Þ

where PðsEMGjxÞ is a conditional probability density function, x is
the latent driving signal representing group delay, which is used to
compute the conditional probability of the filter and sEMG is an
input signal. The skeletal muscle force is filtered by a low-pass
Chebyshev type II filter with a cut-off frequency of 550 Hz
according to the ISEK standards (Merletti, 1999).

3.2. System identification (SI)

The identification of the dynamical relationship between the
sEMG data from the three sensors u1ðtÞ, u2ðtÞ, u3ðtÞ and the
corresponding finger contact force YðtÞ of a healthy subject is
achieved by employing a system identification (SI) technique. In
this fusion algorithm, Output Error (OE) models are used and are
constructed for the data coming from each individual sEMG sensor
and its corresponding skeletal muscle force. The general OE model
structure is given as follows:

yðtÞ ¼ BðqÞ
FðqÞuðt�nkÞþeðtÞ ð2Þ

where BðqÞ and FðqÞ are the polynomials, q is the back shift
operator, eðtÞ is output error, yðtÞ is system output, u is input, nk
is the system delay, and t is the time index.

3.3. Optimized linear model fusion algorithm (OLMFA)

To develop the OLMFA, a GA is utilized. The GA has the
objective to find the optimum values for a transfer function which
is defining the input (sEMG) and estimated output (force). In
particular, the transfer function’s numerator is optimized. As this is
a multi-input system (sEMG sensor array), there are multiple
numerators (as many as sensors). Each numerator is optimized
by finding the optimum zeros of the numerator polynomial. The
denominators are given by the results of the system identification.

The steps of the GA include the initialization of the chromo-
somes (detailed in Step 2 below). Here, chromosomes are defined
as the set of parameters that make out a feasible solution. Using a
cost function, a chromosome can be evaluated and assigned a

fitness value. This fitness value is used in the selection operation of
the GA (step 4). After the selection of parent chromosomes, a
mating operation creates offspring. The offspring undergo a
mutation operation, where a small set of genes are mutated. The
GA repeats itself by using the cost function and assigning fitness
values for the next generation.

The following fusion technique is applied to the sEMG–force
identification model:

Step 1: Considering the sEMG data uðtÞ as input and force data
YðtÞ as output, the sEMG/force linear Models M1ðsÞ; M2ðsÞ;
:::;MnðsÞ are identified using regular linear system identification.
Each model is of the structure as given by Eq. (2). Here, s is the
complex variable s ¼ σþ jω, which can be substituted for the q
operator in Eq. (2).
Step 2: A hybrid transfer function HðzÞ is constructed by
utilizing the denominators of the identified models M1ðsÞ;
M2ðsÞ; :::;MnðsÞ and numerators as defined by: C ¼ p1; p2;…;

�
pN �; is the chromosome, and p1; p2;…; pN ,are the genes. Each
gene represents a zero of the numerator polynomial of
the transfer function. The value of these genes is established
in Step 3.
Step 3: Initial population (IP)is computed by

IP ¼ ðH�LÞnRNþL;

where H is the upper limit of each of the parameters pi (gene), L
is the lower limit of the parameters pi. H and L define the
search area for each parameter, RN is the random number
NIP�NPAf g, NIP is the population size of generations and NPA is
the number of sensors.
Step 4: Selection: selecting two chromosomes as the parent
chromosomes in order to create two offspring. The selection is
based on the fitness function (see Step 8), where each chromo-
some gets a probability assigned of being selected as a mate. The
probability is based (proportional) to the fitness ranking among
all other chromosomes within the population. Considering one
chromosome being selected based on the linear rank algorithm,
the associated probability density function can then be given as

~pj ¼
J Cj
� �

Prepl
i ¼ 1

J Cið Þ
;

where J is the cost function, and ~pj is the jth probability to be
selected. The number of replacement chromosomes chosen is
determined by repl¼ 0:5nðμ�ϑÞ, where μ is the steady state
population—the population which will be maintained for the
duration of the algorithm, with the exception for the first
generation, which usually has a larger size of chromosomes. ϑ
is the proportion of a generation population kept for the mating
process. The selection of the chromosome is accomplished by
using the individual’s cumulative probability

hj ¼
Xj

k ¼ 1

~pk; if ρjð0;1Þohj and ρjð0;1Þ4hj�1;

then CMotherorDad ¼ Cj else CMotherorDad ¼ C1:

Here ρð0;1Þ represents a uniformly distributed random variable
between 0 and 1.
Step 5:Mating: The mating operation follows a similar approach
to the binary implementation of GA where a cross-over point is
selected and the chromosome is partitioned and exchanged the
complementary part of another selected chromosome:

αGA�Roundup NPAf g; C1 ¼ am1 ; am2 ;…; amα ;…; amN

� �
;

C2 ¼ ad1 ; ad2 ;…; adα ;…; adN
� �
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amN is the nth parameter in the mother chromosome, adN is the
nth parameter in the father chromosome.
Then

Cnew1 ¼ amα �βGA amα �adα
� �

; Cnew2 ¼ adα þβGA amα �adα
� �

βGA is the random number on the interval [0,1].
Then the offspring’s or new chromosomes are found as

os1 ¼ am1 ; am2 ;…; anew1 ;…; adN
� �

; os2 ¼ ½ad1 ; ad2 ;…; anew2 ;…; amN �;
where os1; os2 are the off spring.
Step 6: Mutation: The mutation is accomplished by randomly
change some of the parameters within the off spring chromo-
somes. The number of mutations is given by the mutation rate.

MR
nTNP ¼ TPM

where MR is the mutation rate, TNP is the total number of
parameters, NPM is the number of parameters to be mutated.
Step 7: Compute the cost of each chromosome using

J ¼ λ
Xn
i ¼ 1

Y t� ið Þ� Ŷ f t� ið Þ
			 			2þν corr Y ; Ŷ f

h i� �

where λ and v are weighting coefficients and ‘corr’ is the
correlation function.
Step 8: The Fitness function, Ff , is computed by

Ff ¼
Z tf

t0
ŶðtÞ�YðtÞ

� �2
dt ¼

Z tf

t0
ϕ2ðtÞdt:

where t0 and tf are the initial and final time values, ŶðtÞ is the
fusion model estimated force and YðtÞ is the actual force from
the FSR
Step 9: The objective function is set as the error squared of the
resulting MISO system. The discrete time transfer function HðzÞ
is then given as

HðzÞ ¼

A1;1zn þA1;2zn� 1 þ⋯þA1;nþ 1

B1;1zn þB1;2zn� 1 þ⋯þB1;nþ 1

A2;1zn þA2;2zn� 1 þ⋯þA2;nþ 1

B2;1zn þB2;2zn� 1 þ⋯þB2;nþ 1

A3;1zn þA3;2zn� 1 þ⋯þA3;nþ 1

B3;1zn þB3;2zn� 1 þ⋯þB3;nþ 1

0
BBBB@

1
CCCCA

where A0s and B0s are the numerator and the denominator
coefficients respectively of the individual transfer function and
n is the order of the system. The A0s are computed from the
optimum zeros in C. The OE model computed of order (n) for
the sEMG/skeletal muscle force linear system is eight (see the
Appendix).
Step 10: Feeding new data sets to the Multiple Input Single
Output (MISO) transfer function HðzÞ will result in an estimated
OLMFA based force ŶðtÞ.
Based on the poles of the three linear models, corresponding to
each sensor, a Multiple Input Single Output (MISO) transfer
function HðzÞ is constructed. While the denominators of the
respective individual transfer functions (corresponding to each
OE model) are superimposed on the new MISO transfer func-
tion, the corresponding zeros are found using GA. Generally
GA’s can find global optimum points if an elitism scheme is
used and a sufficient number of generations are allowed in the
algorithm (Schoen, 2008). In this work HðzÞ is constructed from
single subject data and cross validated with the rest of the
subjects. It is computed offline by using the system identifica-
tion and the GA to find its optimal zeros as part of the proposed
OLMFA algorithm. This optimization algorithm is rather com-
putationally expensive, however since this can be done offline,
there was no computational time requirement, and one is free
to use GA rather than other intelligence based algorithms.

Chromosomes are constructed by designating each zero of a
numerator as a gene. Since a discrete time model is utilized, the
search area is limited to the unit circle and the resulting MISO
model is decreased to be in minimum phase. The number of
potential zeros was set to the order of the corresponding
denominator. MISO transfer function model validation is done
by k-fold cross validation to test the accuracy of the predictive
model HðzÞ.The following parameters were used for the
employed GA: Maximum Number of iterations: 100; Population
Size of Generation: 48; Population Size for Generations: 24;
Number of Chromosomes kept for mating: 12; Total Number of
parameters in a chromosome: 1; Mutation rate: 0.04; High end
of parameter value: 1; Low end of parameter value: 0.

3.4. LQG controller design

During the development of the artificial hand, changes were
undertaken to the mechanical design and drive trains of the hand
that affect the dynamics of the prosthesis finger motion. In addition,
the uncertain characteristics of kinematic and actuator interaction
may lead to different performance than expected. Hence, an LQG
controller is utilized in order to maintain performance stability. The
simplified block diagram of the LQG controller is given in Fig. 4.

The LQG controller is designed to compensate for the process
(mechanical design) and the measurement (force sensor) noise of
the skeletal muscle force and achieve a desired real-time perfor-
mance. The LQG controller is a well-established concept, for which
the stability issue has already been addressed in literature (Naidu
and Chen, 2011).

The LQG control algorithm with its computational expense is
given as follows:

Given the prosthetic hand model (Naidu, 2002),

xkþ1 ¼ FkxkþGkukþBwkwk ð3Þ
where xk is a torque (state) vector of n-dimension at any instant k
which is derived from the skeletal muscle force (Potluri et al.,
2011), Fk is the system matrix of n� n dimension, Gk is the control
matrix of n� r dimension, uk is the fusion algorithm based scaled
sEMG–force (torque) signal (control vector) of r dimension, Bwk is
the matrix associated with the plant noise wk of n� n dimension.

The measurement is

yk ¼Hkxkþvk ð4Þ
where yk is the skeletal muscle force output vector of p dimension,
Hk is the output matrix of p� n dimension, vk is the measurement
noise of p dimension and k represents discrete time index with
conditions as

ε wkw0
k


 �¼ Qk; i¼ k; and 0; iak

ε vkv
0
k


 �¼ Rk; i¼ k and 0; iak;

ε wkw
0
k


 �¼ 08 i and k

Qk and Rk are covariance matrices associated with plant noise wk

and measurement noise vk respectively.
The performance index is chosen as

J xk0 ; k0
� �¼ ε

1
2x

0
kf Fkf xkf þ

1
2

Pkf � 1

k ¼ k0
x0kQkxkþu0

kRkuk
� �

8<
:

9=
; ð5Þ

xk f is the n� n state vector at final instant kf , Fkf is the n� n
positive semi-definite matrix. Using Qk and Rk in Eq. (5), the
Kalman gain K is computed (see Naidu, 2002 for details) und used
for the proposed LQG controller implementation.
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4. Real-time implementation of the proposed fusion and LQG
algorithms

Skeletal muscle force is estimated from the measured sEMG data
in real-time utilizing the established transfer function HðzÞ. The real
time force data is used along with the proposed LQG controller to
achieve, real-time finger force control of the prosthesis. The force
feedback signal for the controller is acquired by an FSR, which is
mounted at the fingertip of the prosthetic hand prototype. The error
eðtÞ is computed as the difference between the OLMFA estimated
force and the actual force from the force sensor.

To impose a desired dynamical response, an LQG controller is
designed to track the actual force from the force sensor, equating it
to the OLMFA force estimate (reference force profile), and to
minimize the error eðtÞ. The fast prototyping of the above meth-
odology is achieved by an embedded framework using a PIC
32MX360F512L microcontroller. A block diagram of the real-time
embedded framework is given in Fig. 5.

The real-time embedded framework is designed as a master-
slave configuration “Signal Processing” and “Motor Control Logic”.

The Signal Processing stage facilitates the skeletal muscle force
estimation and control and acts as the master configuration. The
dsPIC block set tool chain is used to generate the ‘Assembly C’ code
for the target device (i.e. the PIC 32MX360F512L) from Simulink™.
In order to optimize the micro-controller CPU utilization rate
partitioning is done at the signal processing stage. All analog and
the digital I/O are running at 2000 Hz, i.e. 0.0005 time steps.

The fusion algorithm for the sEMG/skeletal muscle force estimation
and the LQG controller are running at 4000 Hz i.e. 0.00025 time steps.
The skeletal muscle force estimation and the LQG control are running
at twice the rate of the I/O’s. The up-sampling of I/O’s is achieved by
Local Over Sampling (LOS) utilizing a low pass first order digital filter
with a First Order Hold (FOH). The phase lag caused by the filter and
the FOH is corrected by utilizing a feedback loop with a proportional
gain of 10.64 at every 0.0005 time step. Fig. 6. shows the LOS block
diagram, where x½n� is the input data array for the LOS block, yðkÞ is
the signal from the low pass first order digital filter with a FOH, FSin
and FSout are the fudge parameter gain of the LOS block and y½m� is
the up-sampled output data array. In this figure, n; k and m show
different time instances of the finger force signal due to LOS.

Delay
+

+
+

− Kalman
Filter

+

+

+

Process Noise

+

Process Model
Measurement 

Model

PLANT

LQG Controller

Measurement Noise

Fig. 4. LQG control scheme for the prosthetic hand, with the process and the measurement models and their corresponding noises and the LQG controller for both the
estimation and the control.
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Fig. 5. Block diagram representation of real-time embedded framework with the signal processing and motor actuation stages.
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4.1. Signal processing stage

The acquisition of finger force feedback data from the FSR is
accomplished by the PIC’s internal analog to digital converter
(ADC) module. The internal ADC of the PIC 32 has a 10-bits
precision, yielding 3 mV resolution. The FSR (finger force) data is
also acquired at 2000 samples/s by the PIC 32 to match the offline
sEMG/skeletal muscle force sampling rate. The Digital Output
module is used to generate control signals, based on the LQG
control strategy (uk) and transmit them to the motor actuation
(slave) configuration. This module detects the changes in the
reference/command signal and flips the direction bits (ϑ1;ϑ2)
between 0 and 1, facilitating the grasping/actuation action of the
prosthetic hand prototype. Depending on the error eðtÞ a Pulse
Width Modulated (PWM) wave with a specific duty cycle (pd) is
generated by the Output Compare module to adjust the speed of
the grasping action. The mathematical representation of the signal
processing stage is given as

φ¼ ukpdeðtÞ 7ϑ17ϑ2

 � ð6Þ

The UART module of the PIC32 is used to transmit the FSR (finger
force) data from the PIC32 to the PC via serial communication through a
serial virtual COM port, facilitating on-chip debugging and monitoring.
This real-time communication link of the embedded framework enables
performance and accuracy evaluation of the control strategy.

4.2. Motor control logic

In this stage, a SN754410 quadruple half-H driver (Texas Instr-
uments, 1995) is used to actuate the motors with the corresponding
control signal. The PWM wave from the Output Compare module is
transmitted to the enable pin of the H driver. The PWM wave (pd)
which is a function of error eðtÞ enables this H driver and controls the
grasping action speed by varying the duty cycle of the PWM wave.
Therefore grasping action speed is adjusted based on error to achieve
desired performance and accuracy. The digital outputs (ϑ1;ϑ2) of the
PIC32 are transmitted to the direction pins of the H driver. Switching
the digital outputs ðϑ1;ϑ2Þ to 0 and 1 between the pins makes the
fingers open and close. This rotation controls the finger to maintain the
force levels based on the control strategy and reference signal. There-
fore the finger force control, which is a function of torque at each joint,

is achieved by changing the position of the fingers. The motor control
logic is the slave configuration for the signal processing stage. The
communication between the master-slave configurations is achieved
by Pulse Code Modulation (PCM) ϑ1;ϑ2 bits and a PWM wave ðpdÞ.

The two stage real-time embedded control design is tested on
an index finger of the prosthetic hand prototype. The force feed-
back data is acquired from the microcontroller through a second-
ary channel of the UART of the PIC32 by a virtual com port at
57,600 baud rate. The data is converted into unsigned 16 bit
integers before it is transmitted through the UART. The target
device (PIC32) is running at 80 million instructions per second
(MIPS) with its Phase Lock Loop activated. It is running at an
external clock frequency of 8 MHz with internal scaling and rate
partitioning enabled to achieve 80 MIPS.

Fig. 7 shows the embedded test platform for the real-time
acquisition of the sEMG signals and the implementation of the
proposed control system design and the sEMG/skeletal muscle
force fusion algorithm with a prosthetic hand prototype.

Fig. 8 shows the overall computational expense of the OLMFA
sEMG/skeletal muscle force estimation, LQG controller, Up sampling
and the motor control logic. The computational expense of the
overall methodology from Fig. 8, is used to calculate the CPU
utilization of the proposed embedded framework for the prostheses
control applications. The CPU utilization and the robustness of the
embedded framework are discussed in the results and discussion
section. Quantitative analysis of the results is achieved by comput-
ing percentage correlation ðρÞ and relative error ðηÞ between the
actual force ðYðtÞÞ and the fusion algorithm estimated force ðŶ f Þ.

5. Results and discussion

The results are presented in two sections in which the theore-
tical and experimental real-time performance of the controller as
well as the two stage embedded design are evaluated.

5.1. Theoretical

The prosthetic hand index finger’s mathematical model (i.e. Eq. (4))
(Ruoyin and Jiting, 2010) is used instead of the prosthetic hand
prototype to obtain the controlled (simulation-based) force output

Fig. 6. Up sampling block structure.

Fig. 7. (a) sEMG and skeletal muscle force real-time acquisition 7. (b) Embedded test platform for prototyping the fusion algorithm and the LQG control scheme.
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F0ðtÞ and to validate the offline (non-real-time) controller performance.
Fig. 9a shows the fusion model estimated skeletal muscle force Ŷ and
the force output from the controller F0ðtÞ. The controlled force output
F0ðtÞ approaches the fusion model estimated force Ŷ in approximately
0:2 s. It is evident that the LQG controller can track the changes in the
reference force profile, and follow those changes very closely after the
convergence. Fig. 9a also demonstrates detailed grasping action: Grasp
Initiation (GI), Object Grasp (OG), Object Release Initiation (ORI), and
Object Release (OR). Fig. 10a shows the validation with a different
reference force profile ŶðtÞ.To test the robustness of the proposed
design all patterns are randomly chosen by the subjects and the index
finger is extended maintaining the contact with the FSR.

In both cases, to test the performance and accuracy of the LQG
controller, the signal is corrupted with a band limited white noise
before it is fed into the controller. The corrupted input signals are
shown in Figs. 9b and 10b. Even though the signals are corrupted

with noise, the LQG controller is able to track the reference force
ŶðtÞ effectively, as shown in Figs. 9a and 10a.

The tracking performance indicates that the controller can reduce
the disturbances caused by the actuator gears, motors and other
external factors to achieve the desired dynamic response. In both
cases the Pearson correlation coefficient (ρx;y) (see the Appendix) for
the reference force profile ŶðtÞ and the controller output force F0ðtÞ is
0.944 and 0.945, respectively. Figs. 9c and 10c show the error plot
between the fusion-model estimated force ŶðtÞ and the force output
from the controller F0ðtÞ for the two different result sets shown in
Figs. 9a and 10a. These figures show that the error converged to zero
in a very short time, and the error hovered near zero throughout the
grasping time interval. The theoretical design is validated with 15
different data sets, and a mean correlation of 94% (0.9456) is achieved
between the fusion model reference force ŶðtÞ and the controlled
(simulation based) force output F0ðtÞ. The transition peaks of the error

Process measurement and noise parameters

Filtered sEMG and 
Force Signal

Skeletal muscle 
force estimation and 

model parameter

LQG Estimation 
and Control

Add MulSub

26 4718

2u
3u

ku

Add Mul DivSub

44014

Up Sampling

Motor Control 
Logic

Mul

2

Add Mul Div

222

s

3

MM

14

Overall LQG Computational 
expensive load

OLMFA Estimation 
Computation

1u

Add

2

EMG

Fig. 8. Computational expense for the OLMFA estimation, LQG control, up-sampler and the motor control logic.
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as shown in Figs. 9c and 10c, relates to the relatively slow transient
response of the proposed control system.

5.2. Real-time implementation

Fig. 11 shows the fusion model estimated force Ŷ and actual
force (Y) from the force sensor plotted together in the real-time
grasping scenario. Fig. 11 also demonstrates detailed online grasp-
ing actions: GI, OG, ORI, OR. While conducting the experiment, the
prosthetic hand prototype is utilized to maintain a minimum
constant force throughout the grasping action, to ensure contact
between the force sensor and the object. The same experiment is
repeated to test the consistency and to make sure that the object is
in contact with the force sensor throughout the grasping action.

Fig. 12 shows the repeated experimental results with a different
reference force profile ŶðtÞ. The LQG controller is tracking the
reference force profile ŶðtÞ and matching the actual force ðYÞ with
the model estimated force ðŶÞ. The reference force profile is made
as random as possible by feeding the sEMG signals acquired when

the test subject is made to do a random grasping action over a
period of time. The acquired sEMG signals are fed into the MISO
transfer function HðzÞ to test the accuracy and the performance of
the controller, while performing the random grasping action.
Hence this robustness enables the prosthetic hand to effectively
control the finger force while handling delicate objects.

During the experiments, the following observations were
made: (i) Even though a lot of attention had been paid in choosing
the DC motors with a fast time response, we observed slight delays
in tracking the reference force profiles ŶðtÞ. In this work, the DC
motors are solely responsible for the movement of the fingers and
maintaining force. A relatively high transmission ratio is used and
may contribute to the fact that the transient response is somewhat
sluggish. In addition, the identified models that are responsible for
modeling the output based on the measured sEMG signals, may
have good steady-state performance, but are lacking in predicting
the transient behavior. This indicates that there are instances in
which the fingertip lost contact due to the high transmission ratio
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and/or the sub-par transient response performance of the con-
troller. However, the actual force from the force sensor (Y) tracks
the changes in the reference force profile (Ŷ) very closely, except in
the scenarios where the force changed drastically. Thus we can
conclude that, apart from the fast changes in the transient
response, the implemented control scheme produced promising
results. (ii) It is also evident from Figs. 11 and 12 that the minimum
constant force is needed to maintain contact with the object and
also to accomplish accuracy in tracking the reference force profile.
In order to test the precision of the proposed LQG controller, 18
different experiments are conducted with the k-fold cross valida-
tion data from the 18 test subjects. For the 18 experiments, the
mean percentage Pearson’s correlation coefficient of 91.6% and the
mean percentage relative error of 9.2% with a standard deviation
of 71.4 and 71.3 respectively, is achieved for the fusion model
estimated force (Ŷ) and the actual force (Y). Because of the above
mentioned transmission problems, measurement/model errors
and the slow transient response of the controller, slight variability
is observed in the correlation coefficients for the 18 experiments.

Fig. 13 depicts the validation plot with a different OLMFA based
force estimate Ŷ(obtained by feeding a k-fold cross validation sEMG
signals to the MISO transfer function (HðzÞ) and the actual force (Y).
The same measurement/model errors and transient response pro-
blems are observed in this experiment. However, the controller tracks
the reference force profile, the Pearson’s correlation coefficients for
the fusion model estimated force (Ŷ) and the actual force ðYÞ is 0.9,
which is close to other experiments.

5.3. Comparison of OLMFA based LQG with and without rate
partitioning

Table 1 provides the performance of the fusion algorithm based
skeletal muscle force estimation and the LQG control scheme on
the embedded framework with and without rate partitioning. Rate
partitioning helps to achieve a better performance in both the
skeletal muscle force estimation and control with more CPU
utilization of the PIC 32MX360F512L. The embedded framework

with rate partitioning is able to achieve better performance with-
out any task overruns.

Therefore the PIC 32 is able to handle computational load of
rate partitioning and hence the authors choose to use rate
partitioning on the embedded frame work and the OLMFA estima-
tion and LQG control scheme results presented are from the rate
partitioned embedded framework.

5.4. Comparison of OLMFA based LQG and MRAC schemes

The LQG control scheme is compared against a Model Reference
Adaptive Control algorithm (MRAC) (〈http://www.delsys.com/
Products/Bagnoli_Desktop.html〉) that was previously developed
by the authors. The rate partitioning was not done for the MRAC,
hence all the I/O’s, skeletal muscle force estimation and the
controller runs at the same time step on the embedded framework.
This implementation caused increased grasping action delays in
following the reference force profile which reflects as one reason for
the reduced mean percentage correlation coefficients between the
MRAC based actual and the estimated force in Table 2. The fusion
algorithm based skeletal muscle force estimation and the LQG
controller scheme with rate partitioning yields better correlation
and less relative error between the fusion model estimated force
profile ðŶÞ and the actual force ðYÞ than the MRAC. The correlation
coefficient is increased by 10% and the relative error is decreased by
8% with a low Standard Deviation (SD) for the fusion algorithm
based skeletal muscle force estimation and the LQG controller
scheme with rate partitioning.

To test the variability of the results, cross validation is done.
Table 2 provides the mean and standard deviation of the percentage
correlation ðρÞ and the relative error (η) for k-fold cross validation
data from 18 subjects.M2 is the model constructed from the k-fold
cross validation sensor data u2ðtÞ located on the motor unit whereas
M1 and M3 are constructed from k-fold cross validation data sensor
data u1ðtÞ and u3ðtÞ respectively adjacent to the motor unit. Using
the k-fold cross validation, data from each sensor is divided into 18
different subsets. Each individual modelM1,M2 andM3, the OLMFA
based estimates and the control schemes (LQG and MRAC) are

Table 1
Fusion algorithm estimation, LQG scheme real-time performance and the PIC 32 CPU utilization on the embedded framework with and without rate partitioning, the values
are based on the A/D count and the errors are based on the difference of the A/D count between the measured and predicted values.

Fusion algorithm LQG control scheme

With rate partition Without rate partition With rate partition Without rate partition

μρ7σρ μη7ση Load μρ7σρ μη7ση Load μρ7σρ μη7ση Load μρ7σρ μη7ση Load

85.671.6 20.471.5 30.370.03 80.371.7 25.871.6 42.370.07 91.671.4 9.271.3 50.770.01 86.171.4 15.071.5 40.470.04
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Fig. 13. Validation plot for OLMFA based force estimate and actual force from force sensor during the grasp (separate experiment).
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validated with the k-fold cross validation subset data from the 18
subjects. Therefore the mean and standard deviation of the percen-
tage correlation and the relative error for each individual model, the
fusion estimates and the controller’s performance for 18 k-fold
validation subset data are presented in Table 2.

From Table 2 it can be inferred that the sensor data fusion
improves the percentage correlation (ρ) and reduces the percentage
relative error (η) between the actual force (YðtÞ) and the fusion
algorithm estimated force (Ŷ f ) when compared to individual model
force estimates. It can also be inferred from Table 2 that M2 (bold &
italic) is performing better than M1 and M3 for the cross validation
data. It is also observed that the standard deviation for the percentage
relative error and the percentage correlation is low for M2 when
compared with other modelsM1 andM3. Therefore, it can be inferred
that the sensor located directly on the motor point is giving data that
is more suitable to extract useful information from when compared
with the other sensory data. M1 (underlined & italic) is yielding the
next best performance when compared withM3 except for subjects 3,
6, 10 and 18 (underlined & italic). This could be due to motor point
location in reference to sensor alignment and crosstalk and noise
interference. It is observed from Table 2 that the LQG controller is
performing better than the MRAC for all 18 subjects’ k-fold cross
validation data in terms of high mean percentage correlation, low
percentage relative error and standard deviation (bold). Table 2 also
indicates the percentage mean CPU utilization (L) of the PIC
32MX360F512L for 18 subject’s k-fold cross validation for both the
MRAC and LQG control schemes respectively. Although, the LQG
control scheme is computationally expensive to implement on a
real-time embedded test platform, it yields precise and accurate finger
force control of the prosthetic hand. Thus, in order to preserve
accuracy, the LQG controller demands a higher performance
embedded platform in terms of computing power.

5.5. Comparison with the existing literature

In Lopez et al. (2009), Variance Weighted Average (VWA) and
decentralized Kalman filter (DKF) based data fusion algorithms
were implemented and tested on five volunteers. The results were
compared based on the absolute error. Because of the dynamic
nature of the EMG signal and the variability between test subjects,
the reporting of the absolute error can lead to false conclusions.
Therefore, in this work, the relative error is primarily used for
quantitative analysis of the proposed fusion algorithm. The pro-
posed fusion algorithm is tested with the k-fold cross validation
data obtained from 18 test subjects, demonstrating a consistent
improvement in estimating the skeletal muscle force when com-
pared to the individual model estimated force. Since the literature
doesn’t seem to be abundant in the data fusion for sEMG signals, it
is difficult to make an extensive quantitative comparison of the
previous research with the current work.

A real-time control of upper extremity prostheses was studied using
a sonomyography (SMG) signal from the amplitude of the muscle
deformation to control the prosthetic hand (Jun et al., 2010). The utilized
two-dimensional logarithmic search (TDL) prosthesis control algorithm
yielded an overall mean correlation coefficient of 0.99 and a mean root-
mean-square o0.75 for a 1-degree of freedom (DOF) prosthetic hand.
The real-time performance of the algorithm is not evaluated. A real-
time control of a virtual hand study was done by using a local
approximation with lazy learning (Sebelius et al., 2005). The experi-
ments were carried out on six healthy male subjects. In Kazuo and
Yoshiaki (2012) an EMG based impedance control method was pro-
posed to control the robotic hand using a neuro-fuzzy matrix modifier
to make the controller adaptable for the intended motion. The user’s
hand force vector is calculated based on the estimated joint torque and
user’s hand acceleration is obtained based on the calculated hand force
vector to estimate the user’s hand trajectory using neuro-fuzzy classifier.Ta

b
le

2
C
or
re
la
ti
on

co
ef
fi
ci
en

t
p
er
ce
n
ta
ge

s
an

d
p
er
ce
n
ta
ge

re
la
ti
ve

er
ro
r
be

tw
ee

n
d
if
fe
re
n
t
p
re
di
ct
ed

d
yn

am
ic

fi
n
ge

r
fo
rc
e
le
ve

ls
an

d
ac
tu
al

m
ea

su
re
d
fo
rc
es
.T

h
e
va

lu
es

ar
e
ba

se
d
on

th
e
A
/D

co
u
n
t
an

d
th
e
er
ro
rs

ar
e
ba

se
d
on

th
e
d
if
fe
re
n
ce

of
th
e
A
/D

co
u
n
t
be

tw
ee

n
th
e
m
ea

su
re
d
an

d
p
re
di
ct
ed

va
lu
es
.

Su
bj
ec
ts

Fu
si
on

al
go

ri
th
m

re
su

lt
s

M
R
A
C
ρ X

;Y
Η

L M
R
A
C

LQ
G

ρ X
;Y

Η
L L

Q
G

M
1

M
2

M
3

Ŷ
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However, the neuro-fuzzy just like the HILL model (Mitsuhiro and
David, 2013), is intolerant to the subject’s variability. The proposed SI
approach in this manuscript has subject variability tolerance which is
proved by the k-fold cross validation. The other approaches in achieving
real-time sEMG based control of upper extremity prostheses is by
utilizing real-time intelligent classifiers (Nishikawa et al., 2001;
Englehart et al., 2001; Christian et al., 2011). However, the classification
does not provide dynamic sEMG/skeletal muscle force estimation such
as the SI approach and limits the functionality of the prostheses to
certain pre-programmed grasping actions.

6. Conclusion and future work

In this work, a two-stage real-time rate partitioned embedded
framework was designed for estimation and control of the finger
force of the prosthetic hand prototype. Half-Gaussian and Cheby-
shev type-II filters were utilized for the sEMG and skeletal muscle
force filtration. System identification (SI) technique is utilized to
model the dynamic relationship between sEMG–force by employing
linear Output-Error (OE) models. Although better individual models
can be inferred using SI under perfect conditions, the OLMFA
improves the predicted force estimate consistently. The fusion
algorithm’s results were consistent for all the test subjects. The
results indicate that the OLMFA yields a mean percentage correla-
tion of 85.6% and a mean percentage relative error of 20.4% with a
mean standard deviation of 71.6 and 71.5, respectively. A real-
time LQG controller is designed to achieve the finger force control
of the upper extremity prosthesis. The LQG controller based force
output and actual force output for the k-fold cross validation data of
18 test subjects tested on the rate partitioned embedded framework
yields a mean percentage correlation of 91.6% and a mean percen-
tage relative error of 9.2% with a mean standard deviation of 71.4
and 71.3 respectively. The proposed LQG control scheme yielded
desirable correlations with a low relative error when compared
with a MRAC scheme. From the results it is also evident that the
proposed design takes care of the force overshoot problems such as
those of the Motion Hand (Toledo et al., 2009). The OLMFA skeletal
muscle force estimation and the control scheme is tested with the
index finger data from the 18 test subjects and can be easily
extended to the rest of the fingers with a suitable EMG sensor
array. The proposed OLMFA estimation and the controller scheme
achieved the real-time performance on the rate partitioned
embedded framework with a mean CPU utilization of 81% with a
standard deviation of 70.02 for 18 different experiments. The
embedded framework is capable of transmitting the data from the
PIC 32 CPU to the computer. This enables us to validate the
performance of the controller design and also allows fast trouble
shooting with real hardware. This kind of semi-autonomous real-
time control system for the prosthetic hand can substitute for vibro-
tactile feedback. Although this design doesn’t provide any feedback
directly to the amputee, the intelligent sEMG fusion algorithm along
with the semi-autonomous control system can take care of the
grasping actions by having a fine control of finger force along with
visual feedback by the amputee.

The sEMG based finger force OE models are constructed based
on the normal limb sEMG and the corresponding force measure-
ments with the idea of extracting the dynamic relationship
between sEMG and skeletal muscle force. These dynamic models
can be mapped to an amputee who has a variable amount of
residual musculature, varying levels of atrophy, and an unknown
force output by recalibrating the models with the sEMG data using
an existing limb or standard force models (in case of multiple limb
amputation). This design can also be extended to above elbow
amputations by approximating the sEMG data from the biceps and
triceps motor points. This aspect of research is one of our future

goals. Also, the proposed fusion algorithm and the semi-
autonomous control strategy can be generalized and have versatile
applications in the humanoid robotics, computational intelligence
and brain computer interface (BCI).

There is a clear advantage of superior sEMG–skeletal muscle
force estimation with three sEMG sensors as shown in Table 2.
Although the superior skeletal muscle force estimation scheme
poses some complexity in having three channels for each indivi-
dual finger, it can be easily addressed by adding multiple lower
level microcontroller/microprocessors for sEMG signal acquisition
and analog to digital conversion, when we extend it to the five
fingers. Further, the better estimation compensates for the com-
plexity due to multiple channels. This presented research is not
only confined to bio-medical applications but also has extensive
applications in computational intelligence, machine learning,
uncertainty analysis etc. The idea of acquiring more sEMG signals
by utilizing multiple sensors for the purpose of inferring more
information about finger forces is shown as a valid approach in
this work. Hence, utilizing three or more EMG channels is feasible
and from the results presented provides an improved estimate.
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Appendix A

The resulting MISO transfer function HðzÞ is constructed as
follows:

From u1 to output,

z8�3:843z7þ7:729z6�10:78z5þ10:6z4�7:417z3þ3:603z2�0:9795zþ0:1192
z8�4:028z7þ6:325z6�4:121z5�1:545z4þ5:87z3þ2:28z�0:3496

ðA:1Þ
From u2 to output,

z8�4:339z7þ9:005z6�12:42z5þ12:22z4�8:117z3þ3:427z2�0:557zþ0:0958
z8�4:028z7þ6:325z6�4:121z5�1:545z4þ5:87z3�5:433z2þ2:28z�0:349

ðA:2Þ
From u3 to output,

z8�3:522z7þ6:655z6�8:864z5þ8:183z4�5:365z3þ2:423z2�0:557zþ0:0958
z8�4:028z7þ6:325z6�4:121z5�1:545z4þ5:87z3�5:433z2þ2:28z�0:349

ðA:3Þ
Pearson correlation coefficient is given by

ρX;Y ¼ corrðX;YÞ ¼ covðX;YÞ
σXσY

¼ E ðX�μXÞðY�μY Þ
� �

σXσY
ðA:4Þ

where X;Y are random variables, μx and μy are expected values,
and σx;σy are standard deviations respectively. E is the expected
value operator.

Relative Error is given by

η¼Δx
x

ðA:5Þ

where x is the measured value and Δx is the absolute error
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LQG Algorithm with computational cost:
The following color coding is utilized to represent the compu-

tational expense of the LQG algorithm.

Step 1: Enter the prior estimate x̂�
k and its error covariance P�

k .
Step 2: Compute the Kalman estimator (filter) gain

Kek ¼ P�
ekH

0
k HkP

�
ekH

0
kþRk

� ��1 ¼ PekH
0
kðR0

kÞ�1 ðA:6Þ

where Pek ¼ 1�KekHk½ �P0
ek

Pek is the n� n state estimation covariance error matrix
Step 3: Update estimates with measurement yk;

x̂k ¼ x̂0kþKek yk�Hkx̂
�
k

� �
: ðA:7Þ

Step 4: Project ahead the state as

x̂�
kþ1 ¼ Fkx̂kþGkuk ðA:8Þ

Step 5: Project ahead the error covariance as

P�
eðkþ1Þ ¼ Fkx̂kþGkuk; ðA:9Þ

P0
ek�Kek HkP

�
ekH

0
kþRk

� �
K 0
ek ðA:10Þ

Step 6: Go to Step 2 and repeat.
To find the best optimal control,
Step 7: Solve the matrix difference Riccati equation

Pk ¼ F 0k
Pkþ1�
Pkþ1Gk G0

kPkþ1GkþRk
� ��1G0

kPkþ1

" #
FkþQk; ðA:11Þ

with the final condition Pðk¼ kf Þ ¼ Fkf . The Ricatti equation is
solved offline using the QZ algorithm and the coefficients are used
in the real-time implementation.

Step 8: With the solution of Pk from Step 7, obtain the optimal
Kalman controller gain as

Kk ¼ G0
kPkþ1GkþRk

� ��1G0
kPkþ1Fk ðA:12Þ

Step 9: The optimal control uk is given by

uk ¼ �Kkx̂k: ðA:13Þ
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