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Abstract 

Species distribution models (SDMs) have been criticized for involving assumptions that 

ignore or categorize many ecologically relevant factors such as dispersal ability and biotic 

interactions. Another potential source of model error is the assumption that species are 

ecologically uniform in their climatic tolerances across their range. Typically, SDMs treat a 

species as a single entity, although populations of many species differ due to local adaptation 

or other genetic differentiation. Not taking local adaptation into account, may lead to 

incorrect range prediction and therefore misplaced conservation efforts. A constraint is that 

we often do not know the degree to which populations are locally adapted, however. Lacking 

experimental evidence, we still can evaluate niche differentiation within a species’ range to 

promote better conservation decisions. We explore possible conservation implications of 

making type I or type II errors in this context. For each of two species, we construct three 

separate MaxEnt models, one considering the species as a single population and two of 

disjunct populations. PCA analyses and response curves indicate different climate 

characteristics in the current environments of the populations. Model projections into future 

climates indicate minimal overlap between areas predicted to be climatically suitable by the 

whole species versus population-based models. We present a workflow for addressing 

uncertainty surrounding local adaptation in SDM application and illustrate the value of 
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conducting population-based models to compare with whole-species models. These 

comparisons might result in more cautious management actions when alternative range 

outcomes are considered.  

 

Key words: conservation effectiveness, environmental niche models, biodiversity 

management, translocation, model uncertainty, intraspecific variation, Lycaeides melissa 

samuelis, Primula nutans var. finmarchica 

 

Introduction 

Correlative species distribution models (SDMs) are used for inferring relationships between 

species and their environment. They are commonly applied in ecological studies, often to 

describe species’ niches and to inform conservation planning (Bakkenes et al. 2002, 

McCormack et al. 2010, Morueta-Holme et al. 2010, Renwick et al. 2011, Schwartz 2012, 

Guisan et al. 2013). Their use has recently increased due to the improved availability of data 

on species occurrences and projected climate (e.g., Global Biodiversity Information Facility 

[GBIF 2013] and WorldClim [Hijmans et al. 2005]), as well as the development of new 

software platforms and algorithms to analyze and synthesize these data (Franklin 2010).  

SDMs (also called niche, envelope, or bioclimatic models) have been criticized for 

simplifying or omitting factors that influence the distribution of species, such as traits 

controlling dispersal ability and biotic interactions, and for assumptions of niche 

conservatism and of the species being in ecological equilibrium with its environment (Guisan 

and Zimmerman 2012, Dormann 2007, Araújo and Peterson 2012, Early and Sax 2014). 

Several of these shortcomings have been acknowledged and investigated, including the 
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importance of choosing the right modeling algorithm, sample size, and environmental 

variables for an accurate prediction of the distribution (Stockwell and Peterson 2002, 

Heikkinen et al. 2006, Austin and van Niel 2011, Synes and Osborne 2011). These 

limitations, and the importance of drawing appropriate conclusions from SDM results, need 

to be addressed, especially when predicting future suitable areas for a species and using 

SDMs for planning conservation measures (Pearson and Dawson 2003, Heikkinen et al. 

2006, Dormann 2007, Franklin 2010, Araújo and Peterson 2012).   

One potential source of error in SDMs that has been largely overlooked is the effect of local 

adaptation and the consequences of functional differences among populations within a 

species' ranges. A common approach in ecological analyses, including SDMs, is to assume 

that all populations of a species respond homogeneously to the range of environmental 

conditions experienced by the whole species (Davis and Shaw 2011, Bolnick et al. 2003, 

Atkins and Travis 2010, Banta et al. 2012, Fitzpatrick and Keller 2014) and to assume that all 

populations respond homogeneously to environmental conditions experienced by the whole 

species. However, species vary genetically across their range and populations can be locally 

adapted with specialized climatic or other environmental tolerances. If an SDM is constructed 

using distribution data for the whole species, it will also treat the species as an evolutionarily 

homogeneous entity over its entire range (Hampe 2004) and therefore not take into account 

possible population differences, including local adaptation.  

Several studies indicate that populations of some species are adapted to local conditions 

(Davis and Shaw 2001, Bolnick et al. 2003, Banta et al. 2012, Fournier-Level et al. 2011), 

including climate (Pelini et al. 2009, O’Neil et al. 2014). Attempts have recently been made 

to incorporate local adaptation and phenotypic plasticity into SDMs when modeling suitable 

habitats under climate change (Pearman et al. 2010, Benito Garzón et al. 2011, Banta et al. 

2012, Bocedi et al. 2013, Oney et al. 2013, Romero et al. 2013, Homburg et al. 2014, 
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Valladares et al. 2014) and studies indicate that there can be an effect, although varying in 

magnitude and direction, of discriminating among populations in the modeling process.  

This does not, however, mean that one should always assume local adaptation in SDMs if 

populations of species occupy apparently different environments, since they may be 

phenotypically plastic. Nevertheless, without extensive experiments, we cannot know 

whether observed environmental differences among populations have led to local adaptation 

(Kawecki and Ebert 2004, Pelini et al. 2009, Vergeer and Kunin 2013, O’Neil et al. 2014, 

Kreyling et al. 2014). While mechanistic or individual-based process models can offer more 

detailed insight on environmental requirements of species (sensu Morin and Thuiller 2009), 

they also require species-specific physiological parameters that are rarely available. Thus, we 

need additional cost- and time-effective methods for testing the potential importance of 

population differences.  Such first-order approximations based on simplified assumptions can 

serve as a basis for refined investigations requiring more time and resources. Previous studies 

have not compared the potential magnitude of difference among populations that might lead 

us to model populations separately when using SDMs nor the conservation implications of 

incorporating or ignoring local adaptation in SDMs.  

Here, we use two case species to address the following questions:  

 

1) Does modeling geographically disjunct populations separately significantly alter SDM 

projections compared to projections based on whole species analyses?  

2) How does considering population differences affect conservation recommendations and 

conservation strategies?  

3) Which climatic variables can inform subsequent field experiments to detect and measure 

local adaptation?  
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Methods 

Study species 

The Karner blue butterfly (Lycaeides melissa samuelis; KBB) occurs in the Great Lakes and 

nearby regions of North America, historically ranging from the U.S. state of Minnesota in the 

west to New Hampshire in the east (Grundel et al. 1998, Forister et al. 2010). It is a federally 

listed endangered species in the U.S. whose larvae feed on leaves of a single plant species, 

wild lupine (Lupinus perennis).  The KBB has declined, in part, because its main habitats, 

savannas and barrens, have been anthropogenically altered since the 19th century (Forister et 

al. 2010). Populations are currently found in Wisconsin, Michigan, and New York, have 

likely been recently extirpated in Minnesota, Illinois, Indiana, and Ontario, and have recently 

been reintroduced into Ohio and New Hampshire (Fig 1a). KBB populations have been 

shown to be genetically different, at least in their mitochondrial haplotypes (Gompert et al. 

2006).  

The Siberian primrose (Primula nutans) is a circumpolar, perennial plant that mainly grows 

in seashore and riverside meadows (Mäkinen and Mäkinen 1964, Kreivi et al. 2011). The 

subspecies P. nutans ssp. finmarchica occurs in northern Europe (Kreivi et al. 2006). 

Mäkinen and Mäkinen (1964) divided this subspecies into two varieties according to 

morphological and ecological characteristics: P. nutans var. finmarchica occurs at the shores 

of the Arctic Sea while P. nutans var. jokelae occurs by the Bothnian Bay in Finland and 

Sweden and by the shores of the White Sea in Russia. However, recent genetic studies have 

found the three main populations of the Siberian primrose (SP) to be similarly distinct from 

each other (Kreivi et al. 2011). 

Both taxa are threatened and occur in geographically separated populations probably with 

little gene flow among populations (Gompert et al. 2006, Kreivi et al. 2006).  The main 
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populations of both species have possibly been separated into their geographically distinct 

populations during the last glacial retreat (Mäkinen and Mäkinen 1964, Gompert et al. 2008). 

Further, they have been sufficiently studied (Grundel et al. 1998, Gompert et al. 2006, 

Rautiainen et al. 2009, Kreivi et al. 2011) to provide distributional data and biological 

information useful in niche model interpretation. However, we do not know if populations of 

these species are locally adapted.  

 

Occurrence data 

Occurrence data for the KBB (Fig 1a) were combined from site survey records, museum 

records, individual collector records, and GBIF data (GBIF 2013), giving us 828 unique 

occurrence points. For SP distribution data (Fig 1b), we combined the occurrence data 

obtained from GBIF, Kastikka (Finnish plant distribution database; Lampinen et al. 2012), 

and Hertta (Finnish Environment Institute, unpublished data) as well as information on 

occurrences in Russia based on herbarium specimens (from collections in Helsinki [H] and 

Turku [TUR]; acronyms after Thiers, queried June 12 2014). We also added some 

distribution points in Russia according to the distribution map by Hultén and Fries (1986), 

giving us 210 occupied cells. For both species, one grid cell (30 arcseconds) was either 

occupied or not, irrespective of whether many occurrence points fell into a specific grid cell. 

 

Study region 

We created the study domain using a 1,000 km buffer around the occurrence points for each 

species. This mask included all occurrences of the species yet lessened extrapolation, i.e. 

estimation outside observed conditions, when projecting into other climate conditions and 
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larger domains, and excluded bioclimatic regions that were spuriously similar to where the 

species occurred. A common recommendation for choosing the study area is to include areas 

to which the species could disperse (Merow et al. 2013).  In this study, we considered 

conservation under climate change, including possible use of assisted migration to move 

species to climatically suitable regions (McLachlan et al. 2007, Hällfors et al. 2014). As a 

consequence, we not only needed to consider areas where the species could disperse to on its 

own in the near future, but also areas where it might migrate under longer climate changes 

and sites that might be candidates for assisted migration (also called managed relocation).  

 

Climatic data 

Data on current climatic conditions (average climate for 1950-2000; Hijmans et al. 2005), 

represented by 19 bioclimatic variables, were obtained from the WorldClim dataset (Hijmans 

et al. 2005). The spatial resolution of both the current and future climate data was 30 arc-

seconds. Future climate data were obtained from CCAFS (Research program on Climate 

Change, Agriculture and Food Security; Ramirez and Jarvis 2008). This dataset has been 

statistically downscaled from climate models for the 4th report of the International Panel for 

Climate Change (IPCC 2007). The 5th IPCC report (IPCC 2014) contained updated climate 

projections; however, the climate projection data available at 30 arc-seconds spatial 

resolution were not available for multiple decades. We used seven time periods during the 

21st century to generate future distribution projections. Each time frame or decade 

corresponded to a 30 year average, e.g., 2040s is given by 2030-2059. We used predictions 

for future climate calculated according to the UKMO-HadGEM1 general circulation model 

and the A1B scenario, which were the most recent climate scenarios available at the time we 

conducted this present study (Nakienovic and Swart 2000). This scenario describes a world 
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with rapid economic growth using both fossil and non-fossil energy, and reflects current CO2 

growth rates (Le Quéré et al. 2009).  

We performed a variance inflation factor analysis (VIF) to help eliminate highly correlated 

variables as SDM predictors (Merow et al. 2013) Although machine learning methods such as 

MaxEnt can cope with some degree of collinearity (Elith et al. 2011), we elected to use 

variable importance and response curves to inform future experiments (study question 3). If 

two environmental variables are highly correlated, the marginal response curves can be 

misleading. Therefore, we excluded correlated variables prior to calibrating models. For the 

analysis, we calculated Pearson’s correlation values for all 19 bioclimatic variables from a 

sample of 100 000 locations within both study regions (see. Table A1 for correlation values). 

We then ran an ordinary least squares regression that held one variable as dependent and all 

the other variables as explanatory. We calculated variance inflation factors (VIF) for each 

variable and subsequently deleted the variable with the highest VIF value if it was greater 

than 10, and repeated the whole procedure until all VIF values were less than 10 (Craney and 

Surles 2002, O’Brien 2007). We retained eight variables for each species (Table 1). 

 

Grouping of populations 

We used principal components analysis (PCA; Abdi and Williams 2010) to explore whether 

occurrences of the species are segregated by climatic variables and to identify potential 

climatically distinct populations. We used the PCA function in the R-package FactoMineR 

(Lê et al. 2008) to calculate principal components using the entire set of 19 variables. We 

used the first two principal components and the 95% confidence interval of clustering, 

together with knowledge of the taxonomy and the spatial genetic structure of the species 

(Gompert et al. 2006, Kreivi et al. 2011), to define the ‘populations’ for this study. KBB 
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occurrence points were divided into Western and Eastern populations (KBB-West and KBB-

East; Results; Fig 1) and the SP into Southern and Northern populations (SP-South and SP-

North; Fig 1). The whole species are referred to as KBB-Whole and SP-Whole. To inform 

our third research question, which aimed to identify key climatic variables that differed 

between populations and to inform experiments testing local adaptation, we also conducted 

PCA using uncorrelated climatic variables.  

 

Constructing SDMs 

We constructed separate SDMs for the two populations of each species (KBB-East, KBB-

West, SP-South, and SP-North) in addition to an SDM for each species as a whole (KBB-

Whole and SP-Whole). Models differed in number of distribution points (KBB-Whole: 828; 

KBB-East: 355; KBB-West: 473; SP-Whole: 210; SP-South: 150; and SP-North: 60). 

Different sample sizes may affect the comparison of models. However, removing information 

through data point deletion is not necessarily a robust alternative and does not eliminate the 

need to model populations separately if they are locally adapted.  

We used MaxEnt (Phillips et al. 2006) to model species distributions, as it is a commonly 

used SDM algorithm for presence-only data (Franklin 2010, Merow et al. 2013), and it has 

also been shown to perform well in comparisons among different algorithms (Franklin 2010, 

Elith et al. 2006). Although ensemble approaches in SDM have recently been favored 

(Araújo and New 2007), we used one algorithm, one set of climatic parameters, and one 

climatic projection based on one general circulation model and one carbon emissions 

scenario. This enabled us to concentrate on the differences that the species versus population 

approaches produced. 
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We used 20% of the occurrence data for testing the models. We used ten-fold cross 

validation, thus obtaining 10 models and 10 projections for each species. We converted the 

probability of habitat suitability to binary outputs of suitable and unsuitable areas using the 

optimal threshold of maximum sensitivity plus specificity, striking a balance between 

sensitivity and specificity (Liu et al. 2005). For each species and population, this was 

conducted for all 10 models, giving us ten presence-absence maps. We then used a majority 

vote approach to determine the final presence-absence map: the cell was considered suitable 

in the final map if more than five models predicted it to be suitable. The model performance 

was checked using the area under the receiver operating characteristics curve (Jiménez-

Valverde 2012) for the ten models used to obtain one consensus prediction. We report the 

mean and standard deviation of AUC for each suite of 10 models (see Results). Since we 

were not comparing the performance of different models, this measure was suitable for our 

purpose, although concerns have been recognized for using AUC as the only measure of 

model performance (Lobo et al. 2008). 

To understand which climatic variables may be important and differ by population (study 

question 3), we used the permutation importance measure in MaxEnt to assess the relative 

contribution of each environmental variable in determining the predicted distribution of the 

modelled entity (Phillips 2006). Response curves of each variable indicate the response of the 

species (or population) to different variable values (Phillips 2006), i.e. the relative probability 

that a cell with a certain variable value is suitable for the modelled entity. We identified and 

examined response curves of the most important variables in the models and PCA.  
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Niche similarity tests 

To inform study question 1 and evaluate the representativeness of the whole-species models 

for identifying suitable conditions for each population and whether this changed over time, 

we performed a niche similarity test. Using ENMTools (Warren et al. 2008, 2010), we 

measured niche similarity between the mean probabilities of occurrence from ten-fold cross 

validation under all time periods of all three models for both species. We quantified niche 

similarity using two measures: Schoener’s D (Shoener 1968) and the I statistic (a derivative 

of Hellinger’s distance; see Warren et al. 2008, 2010 for additional details). Both metrics 

range from 0 (species have completely discordant niches) to 1 (species have identical niches). 

High values of these metrics between the predictions of the whole-species model and that of 

the two population models indicate that they are predicting different areas of future 

occupancy. Changes in the metrics over time illustrate the degree to which the whole species 

model can or cannot represent the climatic niches of the constituent populations.  

Evaluation of conservation implications 

To evaluate the effects of the two approaches (modeling species as a whole or populations 

separately) on conservation decisions (research question 2), we used the binary suitability 

maps (suitable versus unsuitable cells; Fig 3a, 4a, and Fig A2) to devise broad conservation 

plans. We compared the negative and positive effects of possible conservation decisions 

made under climatic local adaptation of populations versus the species not being 

differentiated into populations, assuming we knew which phenomenon was correct and which 

incorrect.  
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Results 

Delineating populations 

KBB showed distinct clustering in PCA (Fig 2a; variable contribution in Table A2), and we 

divided the KBB occurrences into two populations according to this. Two distinct groups 

were identifiable: the ‘Eastern’ population (KBB-East) consisted of occurrences in Illinois, 

Indiana, Michigan, Ohio, New York, and New Hampshire in the United States and Ontario of 

Canada. The ‘Western’ population (KBB-West) consisted of occurrences in Minnesota and 

Wisconsin (Fig 1a and 2a).  No single variable dominated the PC1 axis (all contributed < 

10%; Table A2) whereas the PC2 axis was dominated by temperature of warmest month 

(TWaM), temperature of warmest quarter (TWaQ), and temperature of wettest quarter 

(TWeQ) (together contributing >50% of the PC axis; index of abbreviations in Table 1).   

The SP occurrences did not form clusters that were as well separated (Fig 2b; variable 

contribution in Table A2). However, some clustering was apparent on the combination of 

PC1 (dominated by and contributing with >50%: precipitation seasonality (PS), precipitation 

of coldest quarter (PCQ), precipitation of driest quarter (PDQ), precipitation of driest month 

(PDM), and annual mean temperature (AMT)) and PC2 (dominated by and contributing with 

>50%: temperature annual range (TAR), temperature seasonality (TS), and mean diurnal 

range (MDR)). This clustering loosely follows the taxonomic division of the varieties 

(Mäkinen and Mäkinen 1964). Additionally, there is probably minimal gene flow among the 

geographically distinct populations (by the Bothnian Bay, White Sea, and Arctic Sea; Kreivi 

et al. 2011). Therefore, we chose not to assign occurrences from the same geographic area to 

separate populations for the study. We grouped them into the Southern and Northern 

populations, which corresponded to var. jokelae (occurrences by Bothnian Bay and White 

Sea) and var. finmarchica (occurrences by the Arctic Sea), respectively (Fig 1b; SP-South 
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and SP-North respectively). Although SP populations could have been defined based on other 

PCA clustering patterns, delineating them into the two populations described above respects 

taxonomy and reflects how their geographical locations result in probable reproductive 

barriers (Kreivi et al 2011).  

 

Species distribution models  

All mean testing AUC values for the models were higher than 0.95, which suggests that the 

model was able to distinguish between presence and background points (KBB-Whole: 

0.953(SD = 0.006); KBB-East 0.977(0.005); KBB-West 0.976(0.002); SP-Whole: 

0.977(0.011); SP-South 0.983(0.02); SP-North 0.998(0.006)). 

Until mid-century, the predicted suitable area of both whole species models generally 

overlapped with that of the population-differentiated models, and the population projections 

coincided with different parts of the whole species prediction (projections for 2020s, 2050s, 

and 2080s in Fig 3a, 4a, all time periods in Fig A2).  After mid-century, this overlap 

continued to be prominent for the SP, while all KBB models predicted mostly different, i.e. 

non-overlapping, areas to be suitable (Fig 3c and 4c). Across all time periods, KBB-West and 

KBB-East predictions never overlapped with each other (Fig 3a), while SP-South and SP-

North predictions overlapped minimally (Fig 4a; 5.3% overlap in current climate; 12.6%  in 

2020’s; 17.3% in 2030’s; 22.0% in 2040’s; 26.1% in 2050’s; 20.8% in 2060’s; 9.4% in 

2070’s; and 5.1% in 2080’s). The number of projected suitable cells based on both SP 

population models were approximately equal to the predicted number of suitable cells of the 

SP-Whole (Fig 4b), whereas the KBB population models together predicted fewer suitable 

cells than KBB-Whole (Fig 3b). Towards the end of the century, the amount of suitable 

climatic area declined according to all models and disappeared from the study region 
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altogether for KBB-West. The models also differed in their prediction of loss of current 

distribution area. KBB-East retained some of its current area while KBB-Whole and KBB-

West lost all of its current distribution (Fig 3c).  SP-North lost suitability in all current areas 

while for the SP-Whole and SP-South some were retained, although the number of cells 

decreased during the century (Fig 4c).     

 

Niche similarity test 

By using niche similarity tests we compare how well the suitable climates of the modeled 

taxonomic units (populations or species) are represented by that of the other taxonomic units. 

Although the niches of the modeled units do not change, the degree to which they are 

represented in different time periods vary and this is captured by the test. Niche similarity 

measures derived from the comparison of the modelled suitable area under current climate for 

the KBB and SP populations were low (KBB-West and KBB-East: I=0.1; Fig 5; plot of D-

values in Fig A3; SP-South and SP-North: I= 0.09 Fig 5). The similarity measurement of 

each of the two populations compared to the whole species were high, however (KBB-West 

vs KBB-Whole: I=0.70; KBB-East vs KBB-Whole: I=0.68; SP-North vs SP-Whole: I=0.68; 

SP-South vs SP-Whole: I=0.71).  

We also measured similarity of projected suitability probabilities over time (Fig 5, plot of D-

values in Fig A3). For the KBB, the values for the population versus whole species 

comparison fluctuated over the century and by the 2080s, KBB-West was roughly as similar 

to KBB-Whole (I= 0.66 in 2080s), as it was in the current projection (I= 0.70 in current). In 

contrast, KBB-East differentiated itself from KBB-Whole (I=0.56 in 2080s). The two KBB 

populations’ projected areas became more similar starting from mid-century (KBB-West vs 

KBB-East in 2080’s: I=0.19). For the SP, all comparisons showed higher similarity by the 
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2040s (Fig 5b). However, niche similarity, i.e. similarity in projected areas, for SP-Whole 

and SP-North decreased in the beginning of the century, increased during the 2040’s, and 

ended up at the same level as in current climate in the 2080s (SP-North vs SP-Whole in 

2080s: I=0.65; SP-South vs SP-Whole: I=0.88). In contrast, the SP-Whole versus the SP-

South comparison rose. The population comparison values stayed within the medium range; 

however, they obtained higher values at the end of the century than that they had in the 

beginning of the century (Fig 5; SP-South vs SP-North in 2080s: I= 0.38). 

 

Important variables 

To understand what climatic conditions may be driving potential local adaptation and to 

inform possible future experiments of local adaptation, we identified the most important 

variables according to the models’ permutation importance (Table 1) and PCA on VIF 

variables (Table A2, Fig A1). Response curves produced in the MaxEnt modeling process are 

in Fig A4. As the response curves represent how the predicted response changes for different 

values of the variable, while keeping all other climatic variables in the model at their average 

sample value, the response is context-specific and would change based on the set of 

covariates used in the same model. Also, as we did not include correlated variables, we 

cannot be sure that the omitted variables are not actually the ones governing the distribution 

of the species (Braunisch et al. 2013, Dormann et al. 2013). Therefore, we also discuss 

strongly correlated variables (>0.9; Table A1) because they may differ between the 

populations in a similar way to the main variable.  
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Karner Blue Butterfly 

The most important variable (explaining > 20% of the model; Table 1) in the KBB-Whole 

model was temperature of the warmest quarter (TWaQ). All models of the KBB show a 

similar response curve for TWaQ (Fig A4), with a peak at around 20 °C. TWaQ correlated 

strongly with annual mean temperature (AMT) and temperature of the warmest month 

(TWaM), the latter which was removed prior to the modeling process.  For KBB-West, 

precipitation seasonality (PS) was also important. The two population models showed the 

highest suitability within different ranges of PS, which suggested that the populations occupy 

separate climatic conditions regarding PS, with the KBB-West experiencing more seasonality 

in precipitation compared to KBB-East (Fig A4). However, strong negative correlations with 

precipitation of driest month (PDM), precipitation of driest quarter (PDQ), and precipitation 

of coldest quarter (PCQ) were noted. Precipitation during winter could therefore also differ 

for the populations. 

 

In the PCA analysis, temperature seasonality (TS), mean temperature of driest quarter (TDQ), 

and precipitation of warmest quarter (PWaQ) were important for distinguishing the 

populations of the KBB, and the modelled responses of the populations differed for these 

three variables (Fig A4). The populations experience different TS, with the KBB-West 

experiencing more seasonality in temperature than KBB-East. TS correlated strongly with 

temperature of coldest month (TCM) and temperature annual range (TAR). Both relate to 

seasonality. TDQ and PWaQ did not correlate strongly (>0.9) with other variables. 
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Siberian primrose 

The two most important variables in the SP models were mean temperature of driest quarter 

(TDQ; for SP-Whole and SP-North) and precipitation of warmest quarter (PWaQ; for SP-

Whole and SP-South). The response of TDQ was similar for all the models (Fig A4). SP-

South had a slightly broader positive response ranging from about -10 to 10°C, however, 

while the response of the SP-North was high at values between approximately -8 to 8°C. 

TDQ did not correlate strongly (>0.9) with any other variable, while PWaQ, the response of 

which is similar for all models, correlated strongly with precipitation of wettest month 

(PWeM). This can indicate that the populations experience similar conditions relating to 

precipitation during the wettest time of the year.  

In the PCA, precipitation of coldest quarter (PCQ), precipitation seasonality (PS), 

temperature of wettest quarter (TWeQ), mean diurnal range (MDR), and isothermality (IT) 

were important for distinguishing the SP populations. The modelled responses (Fig A4) of the 

populations differed for all of these variables, except for PS, for which responses between 

populations was similar. MDR, IT, TWeQ, and PS did not correlate strongly (>0.9) with any 

other variable.  PCQ correlated strongly with several other variables that related to different 

aspects of precipitation (Table A1). Therefore the populations might also experience different 

precipitation regimes in their current distribution.  

 

Discussion 

Population-specific models describing climatically suitable areas for the populations of KBB 

and SP differed significantly from each other within a species and from the whole species 

model, suggesting that population-specific climatic conditions can be important in modeling 
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species distributions. There was no overlap between the projected population models of the 

KBB and a slight overlap between the SP population projections. This may reflect the 

biology of the species, but it may also be an artefact of the modeling process caused by, for 

instance, different samples sizes and background points, complicated interactions between 

variables, or overfitting of the model. Investigating this is beyond the scope of this paper, but 

it could be studied using, e.g., sensitivity analysis, virtual species (LeRoy et al 2015), or 

investigating the presence of non-analogue climates (Williams et. al 2007). 

The PCA results indicated clearer environmental differences between the KBB populations 

than between the SP populations, which is reflected in the SDMs. Therefore, our population 

delineation may have affected the difference in overlap between the species. All SDMs 

predicted some degree of geographical shift in suitable sites as climate change proceeds; 

however, suitable area for KBB-East and SP-South would remain in close proximity to the 

current distribution until the late 21st century. The models for KBB-West and SP-South 

indicate loss of suitable conditions within their current distribution. However, if the study 

area covered a larger area further to the north, the SP-Whole model would likely identify 

more suitable locations. For the SP, expanding the study area northwards would probably 

have marginal effect because of the lack of terrestrial area to the north. 

As would be expected from the PCA results, the niche similarity tests indicated that the 

populations of each species occupy different niches (Fig 5). There are some changes in niche 

similarity over time, e.g., a substantial increase in all niche similarities of the SP by the 

2040’s. This may be caused by the suitable climatic conditions left in northernmost Europe to 

which both SP populations are suited. Why climate is expected to change in this way, 

however, is beyond the scope of this paper. Generally, the climatic similarity in the inter-

population model comparisons are consistently lower than the similarity indicated by any of 

the comparisons of population models to the whole species model. The main divergence can 
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be seen for the comparison of the whole species model projection to that of the population 

model with fewer distribution points. The KBB-East and SP-North projections become less 

similar to the whole species projection with time, compared to the KBB-West and SP-South 

respectively. This indicates that the whole species models fail to represent climatically 

suitable areas for the populations and thus may not properly describe the future suitable areas 

for them. This emphasizes the need to study the basis of niche differences among 

populations, including local adaptation. The potential importance of such local adaptation can 

be explored with SDMs.  

An important benefit of whole-species versus population modeling is its power to guide 

experiments to detect functional differentiation and local adaptation. Specifically, the variable 

importances indicated by MaxEnt give some directions for identifying experimental variables 

in possible experiments on local adaptation between the populations. PCA also can be helpful 

in this regard, as it indicates what variables drive the differences between populations. 

MaxEnt (or other SDMs), however, has the added value of measuring variable importance for 

each population. If populations of KBB were functionally different in their two climatic 

niches--i.e., locally adapted, we predict that experiments manipulating seasonality, summer 

precipitation, and winter temperature would have the highest probability of yielding 

differences between populations. Experiments on local adaptation for the SP should 

concentrate on manipulation of conditions relating to temperature and changes in temperature 

during the day and year as well as conditions relating to precipitation regime over the year. 

Other parameters not included in this study may, however, also be important. 

Implications for conservation 

Failing to take population level differences into account could lead to erroneous management 

decisions if populations are locally adapted. The populations of both case study species 
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occupy different climatic environments according to the PCA, MaxEnt models, and niche 

similarity tests conducted in this study. If the populations have adapted to these differing 

conditions, intraspecific variation could be relevant when planning conservation of the 

species. Experimental studies are needed to disentangle this, but in lack of such information 

readily applicable SDMs may offer one of the best tools to gain insight into the potential 

importance of niche divergence under climate change.   

To explore the conservation implications of either taking the possibility of local adaptation 

into account or ignoring it, we compare the risks of making a type I or type II error in this 

context (Fig 6). When taking local adaptation into account in formulating SDMs with lack of 

experimental evidence, there are two opposing assumptions that can be made: 1) The 

populations are locally adapted, or 2) There is no relevant local adaptation. Assumption 1 

implies using population-based models and drawing up a corresponding Conservation 

Strategy A (Fig 6), while assumption 2) leads the conservationist to use a whole species 

model and Conservation Strategy B. Either assumption may be wrong, which would lead to 

us making a type I error (assuming local adaptation where there is none) or type II error 

(assuming no intraspecific differences when populations actually are locally adapted; Fig 6). 

However, the two conservation strategies (A and B) can be more or less detrimental in case 

they were the wrong choice.  

For the KBB, implementation of a conservation strategy based on population models 

(assuming local adaptation; Strategy A) could proceed by ex situ conservation (off-site, e.g. 

in a zoo) of KBB-West, as suitable climatic conditions for it disappear altogether, and 

assisted migration of KBB-East to new climatically suitable areas. If our assumption is 

wrong, and there is no substantial difference between the populations, we would have made a 

type I error. In this case, we would have protected part of the species ex situ and assisted 

another part in its migration, however, not necessarily to the most favorable areas. The ex situ 
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conserved individuals hopefully may still be used for reintroductions or assisted migrations. 

A conservation strategy based on the whole-species model (assuming no local adaptation; 

Strategy B) could involve assisted migration to the new suitable areas in Canada. If this 

underlying assumption later turns out to be wrong, i.e. the populations turn out to be locally 

adapted, we have made a type II error. We would have assisted the species in its migration 

northward, but the locally adapted populations would have preferred conditions elsewhere, 

e.g., southwards in the case of KBB-East.  

For the SP, a population-based strategy could entail protecting SP-South in situ (on site; in its 

current location) for as long as possible, and using assisted migration to move SP-South 

individuals to where SP-North currently occurs, as well as to other areas becoming 

climatically suitable in the north-eastern part of the study region. We could assist SP-North in 

its migration by moving representatives further north. If research later indicates that the 

populations are not locally adapted, this conservation strategy may still be beneficial since the 

whole-species model also indicates that the new receiving areas are suitable. We may, 

however, regret having assisted SP-South in its migration into the range of SP-North, since 

the northern population could after all have remained in the area, and we may have 

introduced pathogens or caused inter-breeding of the populations, leading to loss of genetic 

diversity in other aspects than climatic adaptation. A whole species-based conservation 

strategy could consist of in situ conservation in all current areas and assisted migration of 

various representatives of the species to new suitable areas further north and towards the east. 

If we later discover that the populations are locally adapted, this conservation strategy may 

prove disadvantageous. Protecting SP-South in situ would also have served the purpose in 

this case, but the current areas of the SP-North would not have remained suitable. Instead, it 

would have suited SP-South better. Depending on what source of individuals was used in the 

assisted migration project, the populations may have been introduced to incorrect areas.  
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One could argue that the local adaptation assumption and resultant conservation strategies are 

more cautious and the type I error (assuming local adaptation where there is none) therefore 

is less detrimental. This could be especially relevant for the SP, since the population models 

distinguish different areas of the whole species model as suitable for the specific population, 

instead of pointing to additional ones. Nevertheless, if the risks involved with both errors are 

high and knowledge on local adaptation is lacking, combining aspects of both conservation 

strategies may be the best way forward until we have gained further information through 

experiments that can give a more mechanistic understanding of species responses to different 

environmental conditions (Morin and Thuiller 2009). For example, in the case of SP, such 

combined conservation efforts might include in situ conservation combined with assisted 

migration based on the whole-species model, through sourcing and distributing seed from SP 

locations that, based on the population models, most likely will be suitable for a specific 

receiving area. Opting for one main conservation strategy can be risky, and there may be 

more uncertainty involved in extinction predictions of SDMs than predictions of new suitable 

area (Schwartz 2012). Therefore, there is reason to be cautious with decisions involving 

discontinuing in situ conservation. 

Workflow for considering local adaptation 

To allow effective use of available SDM tools in conservation of species, managers could 

benefit from first-order approaches that can identify cases where the populations of a species 

may differ from each other and thus may need individual conservation attention, separate 

modeling, or diverse conservation strategies. We have identified important climatic 

parameters for designing experiments on local adaptation in two species and illustrated how 

PCA and SDMs can be used to help guide experimental design for mechanistic 

experimentation that can aid in confirming the presence of local adaptation.  Until such 

knowledge is obtained, however, SDMs continue to be useful tools for informing 
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conservation. Nevertheless, SDMs should be used mainly as a first-order approximation and 

not as a direct and sole guide for decisions.  

We suggest a workflow for situations where local adaptation between populations is likely 

but unknown (Fig 7). The first step involves recognizing cases when local adaptation may 

require conservation attention. It is reasonable to assume that many species of conservation 

concern would possess varying degrees of adaptation to their local environments. Such cases 

include species with spatially distinct populations, reproductive isolation (Frankham et al. 

2012), steep environmental gradients, species with taxonomic confusion (Kawecki and Ebert 

2004), subspecies (Oney et al. 2013), or endangered species that are discontinuous across 

their range. If these species seem to inhabit separate climatic environments across their range, 

this may be an indication that they could be locally adapted. Until experiments, such as 

translocation trials, elucidate existence of local adaptation, we suggest modeling uncertain 

populations separately in addition to whole-species modeling. By comparing the effects of 

making a type I or type II error, risks can be taken into account and minimized. In many 

cases, incorporating aspects of both scenarios may be beneficial, especially when the risks are 

high. By applying cautious conservation and acknowledging the possibility of local 

adaptation, we can avoid losing biodiversity due to ill-advised decisions. 
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Tables  

Table 1.  Index for variable abbreviations and table of variable importance (permutation 

importance in MaxEnt model) of variables included in each model. Variable importance 

higher than 20 in bold. 

Variable     KBB-Whole 

KBB-

East KBB-West 

SP-

Whole  SP-North SP-South 

AMT bio1 Annual Mean Temperature N/A N/A N/A 4.8 19 10.3 

MDR bio2 Mean Diurnal Range 1.4 1.2 1.7 2.7 1.3 5.9

IT bio3 Isothermality N/A N/A N/A 0.9 0.5 0.6

TS bio4 Temperature Seasonality 9.6 11.2 1.9 N/A N/A N/A 

TWaM bio5 Max Temperature of Warmest Month N/A N/A N/A N/A N/A N/A 

TCM bio6 Min Temperature of Coldest Month N/A N/A N/A N/A N/A N/A

TAR bio7 Temperature Annual Range N/A N/A N/A N/A N/A N/A

TWeQ bio8 Mean Temperature of Wettest Quarter 4.5 16.9 1.8 1 6.3 2.5 

TDQ bio9 Mean Temperature of Driest Quarter 4 12 1.4 27.3 57.4 1.1 

TWaQ bio10 
Mean Temperature of Warmest 

Quarter 
70.5 27.9 47.9 

N/A N/A N/A 

TCQ bio11 Mean Temperature of Coldest Quarter N/A N/A N/A N/A N/A N/A 

AP bio12 Annual Precipitation N/A N/A N/A N/A N/A N/A

PWeM bio13 Precipitation of Wettest Month 2.2 7 2.4 N/A N/A N/A

PDM bio14 Precipitation of Driest Month N/A N/A N/A N/A N/A N/A 

PS bio15 Precipitation Seasonality 6.2 12.6 40.3 0.4 0.3 0.9 

PWeQ bio16 Precipitation of Wettest Quarter N/A N/A N/A N/A N/A N/A

PDQ bio17 Precipitation of Driest Quarter N/A N/A N/A N/A N/A N/A

PWaQ bio18 Precipitation of Warmest Quarter 1.7 11.2 2.7 62.1 14.5 75.9 

PCQ bio19 Precipitation of Coldest Quarter N/A N/A N/A 0.9 0.7 2.7 
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Figure captions 

Figure 1.  Occurrence points were broken up into populations as determined by PCA, see 

Materials and Methods – Grouping of populations and Results. a) cross = KBB-East 

population, circle=KBB=West population b) cross=SP-North population; circle=SP-South 

population. The whole species models used all occurrence points of each species (KBB-

Whole and SP-Whole). 

Fig 2. PCA of the a) KBB, and b) SP, using 19 bioclim variables. Circles represent 95% 

confidence intervals of population groupings. Percentages by axes indicate how much 

variation is explained by the principal components. 

Figure 3. KBB predictions a) Map showing predicted suitable distribution in 2020s, 2050s, 

2080s according to KBB-Whole (left column; projection in green) and KBB-West and KBB-

East (right column; projections in orange and blue, respectively) b) Change in predicted 

suitable grid cells for the KBB species and the two populations across time; “populations 

combined” = predicted suitable grid cells for KBB-West and KBB-East. c) Spatial overlap 

with current distribution points (number of cells that overlap). 

Figure 4. SP predictions a) Map of predicted suitable distribution in 2020s, 2050s, 2080s 

according to SP-Whole (left column; projection in green)and SP-South and SP-North (right 

column; projections in orange and blue, respectively) b) Change in predicted suitable grid 

cells for the KBB species and the two populations across time; “populations combined” = 

predicted suitable grid cells for SP-North and SP-South. c) Spatial overlap with current 

distribution points (number of cells that overlap). 
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Figure 5. I values, which are calculated from 1 - 1/2 *Hellinger distance, based on the 

predicted suitability probabilities and predicted future climates for the a) KBB and b) SP 

models over time. 

Fig.6. Assumption versus reality of local adaptation or undifferentiated populations. In cases 

where we do not know the degree of local adaptation, the effect on conservation of making a 

type I or type II error needs to be compared. 

Fig 7. Workflow for local adaptation consideration in conservation planning using SDMs. 
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