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Limit distributions for products of sums
Yongcheng Qi∗

Department of Mathematics and Statistics, University of Minnesota-Duluth, Campus Center 140,
1117 University Drive, Duluth, MN 55812, USA

Abstract

Let {X; Xn; n¿ 1} be a sequence of independent and identically distributed positive random variables
and set Sn =

∑n
j=1 Xj for n¿ 1. This paper proves that properly normalized products of the partial sums,

(
∏n

j=1 Sj=n!�n)�=An , converges in distribution to some nondegenerate distribution when X is in the domain of
attraction of a stable law with index 	∈ (1; 2].
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1. Introduction

Let {X; Xn; n¿ 1} be a sequence of independent and identically distributed random variables and
de5ne the partial sum Sn =

∑n
j=1 Xj for n¿ 1. In the past century, the partial sum Sn has been the

most popular topic for study. Such well-known classic laws as the distributional laws, strong laws
of large numbers, and the law of the iterated logarithm all describe the partial sum.

In this paper we assume that X ¿ 0. In a recent paper by Rempa la and Weso lowski (2002) it is
showed under the assumption E(X 2) ¡∞ that(∏n

j=1 Sj

n!�n

) 1
�
√

n
d→ e

√
2N; (1.1)

where N is a standard normal random variable, �=E(X ) and �=�=� with �2 = Var(X ). Obviously
(1.1) provides an alternative method for the inference of �. The study of (1.1) was motivated by a
study by Arnold and Villaseñor (1998) who considered the limit distributions for sums of records.
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Arnold and Villaseñor (1998) focused on a special case when X is a unit exponential random
variable. In this case,

 n∏
j=1

Sj

j




1=
√

n

d→ e
√

2N: (1.2)

The original result in Arnold and Villaseñor (1998) was stated in an equivalent form with a logarithm
taken on both sides of (1.2):∑n

j=1 log Sj − nlog n + n√
2n

d→N: (1.3)

This shows that the asymptotic behavior for the products of sums of positive random variables
resembles that for sums of independent random variables under certain circumstances.

The present paper focuses on the study of the limit distributions for products of sums of positive
random variables in more general settings. Precisely speaking, we will assume that the positive
random variable X is in the domain of attraction of a stable law with index 	∈ (1; 2]. The main
result and its proof will be given in the next section.

2. Main theorem

As in the introduction, we let {X; Xn; n¿ 1} be a sequence of independent and identically dis-
tributed positive random variables and set Sn =

∑n
j=1 Xj for n¿ 1 and assume X is in the domain

of attraction of a stable law with index 	∈ (1; 2]. Note that E(X ) ¡∞ when X is the domain of
attraction of a stable law with an index 	∈ (1; 2].

Recall that a sequence of independent and identically distributed random variables {X; Xn; n¿ 1}
is said to be in the domain of attraction of a stable law L if there exist constants An ¿ 0 and Bn ∈R
such that

Sn − Bn

An

d→L; (2.1)

where L is one of the stable distributions with index 	∈ (0; 2].
The following theorem is well known (see e.g., Hall, 1981 or Bingham et al., 1987).

Theorem 2.1 (Stability Theorem). The general stable law is given, to within type, by a character-
istic function of one of the following forms:

(i) �(t) = exp{−t2=2} (normal case, 	 = 2);
(ii) �(t) = exp{−|t|	(1 − i�(sgn t) tan 1

2�	} (0 ¡	¡ 1 or 1 ¡	¡ 2), −16 �6 1;
(iii) �(t) = exp{−|t|(1 + i�(sgn t)2=� log|t|} (	 = 1; −16 �6 1).

It is worth mentioning that in Theorem 2.1, � is the skewness parameter. In our paper, � = 1
since X is a non-negative random variable.
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Let F denote the distribution function of X ′ = X − �. De5ne the generalized inverse of
1=(1 − F) by

U (x) = inf
{
t:

1
1 − F(t)

¿ x
}

:

Write

S(x) = E[(X ′)2]I(|X ′|6 x); for x¿ 0;

and denote the generalized inverse of x2=S(x) by V (x)

V (x) = inf
{
t:

t2

S(t)
¿ x

}
:

One can always take Bn = n� in our setting. Throughout this paper we will take An = U (n) if
	¡ 2, and An = V (n) if 	 = 2. Then from LoJeve (1977), the limit L in (2.1) has a characteristic
function as in Theorem 2.1.

Theorem 2.2. Assume that the non-negative random variable X is in the domain of attraction of
a stable law with index 	∈ (1; 2] with � = E(X ). The constants An are de8ned as above so that
the limit L in (2.1) has a characteristic function as in Theorem 2.1. Then(∏n

j=1 Sj

n!�n

)�=An

d→ e(�(	+1))1=	L; (2.2)

where �(	 + 1) =
∫∞

0 x	e−x dx.

Remark. When 	 = 2, X is said to be in the domain of attraction of the normal. A special case is
when E(X 2) ¡∞. Since S(x) → �2 =Var(X ) as x → ∞; An ∼ �

√
n. Moreover, �(	+1)=�(3)=2.

Therefore, our result coincides with that of Rempa la and Weso lowski (2002).
Before we proceed to the proof of the theorem we give the following lemma.

Lemma 2.3. Under the conditions of Theorem 2.2
n∑

j=1

log( n+1
j )

An
(Xj − �) d→ (�(	 + 1))1=	L:

Proof. We unify the proofs for the cases 	¡ 2 and 	 = 2. First let A(x) = U (x) and
D(x) = 1=(1 − F(x)) if 	¡ 2, and A(x) = V (x) and D(x) = x2=S(x) if 	 = 2. According to LoJeve
(1977), when 	¡ 2; 1 − F(x) is regularly varying with index −	, and thus 1=(1 − F) is regularly
varying with index 	; when 	 = 2, S(x) is slowly varying and x2=S(x) is regularly varying with
index 2. Therefore, we have that D(x) is regularly varying with index 	∈ (1; 2], and that A(x) is the
generalized inverse of D(x) and is regularly varying with index 1=	∈ [1=2; 1). (See, e.g., Bingham
et al., 1987, Theorem 1.5.12). Moreover,

D(A(x)) ∼ A(D(x)) ∼ x as x → ∞: (2.3)
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Let f denote the characteristic function of Xi − �. Then (2.1) is equivalent to the following
convergence

n
(

1 − f
(

t
A(n)

))
→ −log �(t) locally uniformly over t ∈R:

(See, e.g., Bingham et al., 1987, Lemma 8.2.0). Since A(x) is regularly varying, we have as x → ∞

x
(

1 − f
(

t
A(x)

))
→ −log �(t) locally uniformly over t ∈R:

Then substituting x by D(s) we have from (2.3) the following consequence: as s → ∞
D(s)

(
1 − f

( t
s

))
→ −log �(t) locally uniformly over t ∈R: (2.4)

Let fn denote the characteristic function of
∑n

j=1

log( n+1
j )

An
(Xj − �). Then

fn(t) =
n∏

j=1

f

(
log( n+1

j )

An
t

)
=

n∏
j=1

f
(

t
An=log((n + 1)=j)

)
:

We will show that for any t ∈R,

lim
n→∞fn(t) = (�(t))�(	+1): (2.5)

First, note that An=log((n + 1)=j)¿An=log(n + 1) for all 16 j6 n, and

lim inf
n→∞

An√
n
¿ 0: (2.6)

Then, from (2.4) we get for any 5xed t

D(An=log((n + 1)=j))
(

1 − f
(

t
An=log((n + 1)=j)

))
→ −log �(t)

uniformly for 16 j6 n, or equivalently

f
(

t
An=log((n + 1)=j)

)
= 1 +

1 + o(1)
D(An=log((n + 1)=j))

log �(t)

where o(1) is a term that tends to 0 uniformly over j as n tends to in5nity. Without any further
notice, we use o(1) in the sequel to denote some term with such a property. Since 1 + x = ex+o(x)

as x → 0, we get

f
(

t
An=log((n + 1)=j)

)
= exp

{
1 + o(1)

D(An=log((n + 1)=j))
log �(t)

}

and hence we conclude for any 5xed t ∈R

fn(t) = exp


(1 + o(1)) log �(t)

n∑
j=1

1
D(An=log((n + 1)=j))


 :
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Therefore, in order to show (2.5), it suLces to prove
n∑

j=1

1
D(An=log((n + 1)=j))

→ �(	 + 1): (2.7)

Since D(x) is regularly varying with index 	, it can be written as D(x) = x	L(x), where L(x) is
slowly varying. Then

1
D(An=log((n + 1)=j))

=
(log((n + 1)=j))	

D(An)
L(An)

L(An=log((n + 1)=j))
:

From (2.3), D(An) = D(A(n)) ∼ n. Thus,
n∑

j=1

1
D(An=log((n + 1)=j))

= (1 + o(1))
n∑

j=1

(log((n + 1)=j))	

n
L(An)

L(An=log((n + 1)=j))
:

For any 5xed small "¿ 0, we will break the right-hand side of the above equation into three
sums:

n∑
j=1

(log((n + 1)=j))	

n
L(An)

L(An=log((n + 1)=j))

=
∑

"n6j6(1−")n

(log((n + 1)=j))	

n
L(An)

L(An=log((n + 1)=j))

+
∑

16j¡"n

(log((n + 1)=j))	

n
L(An)

L(An=log((n + 1)=j))

+
∑

(1−")n¡j6n

(log((n + 1)=j))	

n
L(An)

L(An=log((n + 1)=j))

=I + II + III:

By properties of slow variation, as s → ∞, L(sx)=L(s) → 1 uniformly over x∈C, where C is any
compact interval in (0;∞). Therefore,

I = (1 + o(1))
∑

"n6j6(1−")n

(log((n + 1)=j))	

n
→
∫ 1−"

"
(−log x)	 dx:

To estimate II and III, we need the Potter’s bound for slowly varying function L(x): L(x)=L(y)6
max(x=y; y=x) when x and y are suLciently large (Bingham et al., 1987, Theorem 1.5.6). Hence,
we get

II6
∑

16j¡"n

(log((n + 1)=j))	+1

n
→
∫ "

0
(−log x)	+1 dx;

and

III6
∑

"n¡j6n

(log((n + 1)=j))	−1

n
→
∫ 1

1−"
(−log x)	−1 dx:
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So we get for all small "¿ 0

lim sup
n→∞

∣∣∣∣∣∣
n∑

j=1

(log((n + 1)=j))	

n
L(An)

L(An=log((n + 1)=j))
−
∫ 1

0
(−log x)	 dx

∣∣∣∣∣∣
6 2

∫ "

0
(−log x)	+1 dx + 2

∫ 1

1−"
(−log x)	−1 dx;

which tend to 0 as " → 0. Therefore,
n∑

j=1

(log((n + 1)=j))	

n
L(An)

L(An=log((n + 1)=j))
→
∫ 1

0
(−log x)	 dx =

∫ ∞

0
x	e−x dx:

That proves (2.7) and (2.5).
Finally, we need to show that �(t)�(	+1) is the characteristic function of �(	 + 1)1=	L. For

	∈ (1; 2], it is obvious from the expression of � that �(t)�(	+1) = �(�(	 + 1)1=	t). That completes
the proof of the lemma.

Proof of Theorem 2.2. It is easily seen that for some constant c∈ (0;∞)
n∏

j=1

log(1 + 1
j )

1
j (1 − 1

2j )
→ c;

which, coupled with (2.6), yields
 n∏

j=1

log(1 + 1
j )

1
j




�=An

→ 1:

Thus, it suLces to show
 n∏

j=1

log(1 + 1
j )Sj

�




�=An

d→e(�(	+1))1=	L:

By strong law of large numbers, with probability one

&j= :
log(1 + 1

j )Sj

�
− 1 = j log

(
1 +

1
j

)
Sj − j�

j�
+ j log

(
1 +

1
j

)
− 1 → 0 (2.8)

as j → ∞.
Notice that E|X |r ¡∞ for all 1 ¡r ¡	. For our purpose, we 5x r ∈ (2	=(	+ 1); 	). We have by

Marcinkiewicz-Zygmund’s strong law of large numbers (see, eg., Chow and Teicher, 1988, p. 125),
Sj − j� = o(j1=r) almost surely. Then ((Sj − j�)=j�)2 = o(j2=r−2) almost surely. Therefore,

n∑
j=1

[
j log

(
1 +

1
j

)]2(Sj − j�
j�

)2

= o(n2=r−1)

and
n∑

j=1

[
j log

(
1 +

1
j

)
− 1
]2

= O(log n):
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We conclude that with probability one
n∑

j=1

&2
j 6 2

n∑
j=1

[
j log

(
1 +

1
j

)]2(Sj − j�
j�

)2

+ 2
n∑

j=1

[
j log

(
1 +

1
j

)
− 1
]2

= o(n2=r−1):

Since 2=r − 1 ¡ 1=	 and A(x) is regularly varying with index 1=	, and thus

lim
x→∞ x2=r−1=A(x) = 0

from property of regular variation. So we get∑n
j=1 &2

j

An
→ 0 (2.9)

with probability one.
In view of (2.8),

log(1 + 1
j )Sj

�
= 1 + &j = e&j+O(&2

j );

and thus from (2.9)
 n∏

j=1

log(1 + 1
j )Sj

�




�=An

= exp

{
�
∑n

j=1 &j
An

+ O

(∑n
j=1 &2

n

An

)}
= exp

{
�
∑n

j=1 &j
An

+ o(1)

}
:

The remaining task is to show that
�
∑n

j=1 &j
An

d→(�(	 + 1))1=	L: (2.10)

As a matter of fact,
�
∑n

j=1 &j
An

=
1
An

n∑
j=1

log
(

1 +
1
j

)
(Sj − j�) +

�
An

n∑
j=1

(
j log

(
1 +

1
j

)
− 1
)

=
n∑

j=1

log( n+1
j )

An
(Xj − �) + O

(
log n
An

)

=
n∑

j=1

log( n+1
j )

An
(Xj − �) + o(1):

(2.10) is proved by applying Lemma 2.3. That completes the proof.

3. Open problem

One would be interested in asymptotic behavior of the product of sums when X is in the domain
of attraction of a stable law when the index 	∈ (0; 1]. Unfortunately we are unable to prove whether
(2.2) holds for 	∈ (0; 1]. We guess (2.2) could be true when 	=1 but E(X ) ¡∞. For case 	∈ (0; 1)
(this implies E(X ) = ∞) or 	 = 1 but E(X ) = ∞, one has to 5nd some appropriate normalization
constants for the product of the sums. This is an unsolved problem as well.
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