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Abstract

The Ngram Statistics Package is a freely available tool that counts sequences of words in
text, and identifies those that have some added significance via a number of different

measures of association. This package has been available since 2001, and has literally

hundreds of users.

However, the internal organization of the package has shown signs of age and disrepair.
This project was undertaken to make NSP more object oriented, in order to reduce code
replication and to improve the maintainability of the package. A significant
reorganization was undertaken that has greatly reduced the amount of duplication in the
code, and 1improved the logical organization of the measures in the
package. In addition, several new measures have been added to the package, and a

significant optimization to Fisher's Exact test has been designed and implemented.
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1 Introduction

Ngram Statistics Package (NSP) is a collection of Perl modules and programs that aid in
identifying Ngrams in text corpora. Identifying interesting Ngrams is one of the
fundamental problems in computational linguistics. Ngrams are defined as a sequence of
N tokens that occur in proximity to each other. Tokens are the smallest indivisible units of

text. In NSP tokens can be alphanumeric characters, words or some combination of these.

Ngrams were first used by Claude E. Shannon [16] to compute the entropy of the English
language. He devised an experiment wherein he used the previous N characters in a
phrase to guess the N+/* character. Nowadays, Ngrams are used in several areas of
statistical computational linguistics. For example, they are used in pattern recognition

systems to compute the probability of a given word sequence appearing in text.

In speech recognition phonemes are modeled using Ngrams. Similarly Optical Character
Recognition (OCR) systems use Ngrams to identify the next character or word. This is
achieved by identifying and computing the probability of all the possible Ngrams. Then
the most probable Ngram containing the already identified tokens (phonemes, character

or words) is used to identify the next token.

Ngrams also find use in word sense disambiguation, machine translation and information
retrieval. Most supervised word sense disambiguation applications use Ngrams features to
identify the meaning of a given target word. In machine translation Ngrams are used to

identify collocations.

Collocations are defined as sequences of words in which, if the constituent words are

separated they would have a different meaning than the sequence itself. This is important



because if such a sequence of words were translated verbatim the resulting sequence
might not have the same meaning. Some examples of collocations are “World Cup”,

“middle management” etc.

Some of the contributions of this project are the introduction of new measures for Ngram
Statistics Package. In addition, the existing measures of association have been rewritten
using a more modular approach, using object oriented concepts. The (*) in the Table of
Contents of this report is used to identify the new measures of association or the ones to

which some significant changes have been made.

The first chapter of this report provides a brief overview of the Ngram Statistics Package.
In the second chapter we go on to provide the theoretical background of all the measures
of association available in Ngram Statistics Package. Third chapter discusses the new
design of measures of association in NSP. Then we go on to describe some of the
Experiments performed and the results obtained. Finally we discuss some of the future

work that can be done.



2 Overview of Ngrams Statistics Package

There are two programs in NSP that allow users to identify and analyze Ngrams in a text
corpus. The program count.pl is responsible for identifying and counting the number of
occurrences of Ngrams. count.pl takes a text file as input and outputs a list of all the
Ngrams along with their frequency counts. Program statistic.pl allows the user apply a
measure of association to the output of count.pl. These measures of association can be

used to decide whether a given Ngram is significant or not.

This chapter provides a detailed introduction to the Ngram Statistics Package. The first
few sections describe the process of identifying and counting Ngrams from a text file.
Next we discuss the implementation and working of the program statistic.pl. Finally the

program rank.pl, which can be used to compare two measures of association, is described

2.1 Tokenization

Generally tokenization is the first step in any natural language processing task. During
tokenization the input text is broken down into the smallest indivisible units, known as
tokens. NSP uses Perl regular expressions to define tokens in text. These regular

expressions can either be specified by the user, or the defaults are used (Figure 1).

Aw+/

NN

Figure 1: Default regular expressions

The first regular expression defines a token to be a sequence of alpha-numeric characters,

while the second regular expression defines a single punctuation mark to be a token.



These defaults more or less correspond to the idea of a token as a word, but in fact tokens

can either be alphanumeric characters or any such combination.

Given a set of regular expressions, the input file is converted into one long input string by
replacing all the new-line characters with a space character. This string is then matched
against each of the regular expressions. If a substring, beginning from the first character
of the input string, matches any regular expression it is identified as a token and is deleted
from the input string. In case no match is found the first character in the input string is

marked as a nontoken and is deleted.

This process is repeated until the input string is empty. For example, consider the input
string “Heavy security was in place as U.S. President George W Bush landed in Delhi.”.
Table 1 lists all the tokens that would be identified if the default regular expressions are

used.

Table 1: Tokens with default regular expressions

Heavy<> |security<>|was<>|in<> |place<>

as<> U<> <> S<> <>

President<>|George<> |W<> |Bush<>|landed<>

in<> Delhi<> |.<>

The meta-character <> is used to terminate a token. Such a representation is required
because a token might be defined to consist of embedded white spaces. For example

“President George W Bush<>".

Users can provide regular expressions by placing them in a single file and then passing
the name of this file using the --foken option in count.pl. NSP prioritizes the regular
expressions in the order they are specified, and different orderings of regular expressions

might produce different set of tokens.



For example, assume that the regular expressions /United States/, /United States of
America/ and Aw+/ are used, in that order, to tokenize the input string “Ghana beat the
United States of America in Group E decider”. Since the first three substrings (i.e.
“Ghana”, “beat” and “the”) match the third regular expression, they are identified as valid
tokens and are deleted from the input string. Even though the remaining string matches all

three regular expressions, “United States” is identified as the next token.

In case the order of regular expressions is switched to /United States of Americal,
/United States/ and Aw+/ the resulting set of tokens would be slightly different, as

“United States of America” will be identified as the fourth token instead of ‘“United

States”.

Often times it is required that certain sequence of character not be considered as tokens.
This can be achieved by using the --nontoken option with count.pl. Users can define
regular expressions to match the strings that should not be identified as tokens. The input
data is first compared to the set of non-token regular expressions, if a matching string is
found it is deleted from the input data. Once all the non-token strings have been removed
from the input data, it is parsed to identify tokens. This can be useful when removing

numeric data or HTML markup tags from the input text.

2.2 Identifying Ngrams

Once the text has been tokenized, the next step is to identify Ngrams. This is done by
assembling sequences of N tokens. Generally these tokens are contiguous, that is they
occur together in the text. Tables 2 lists all such bigrams in the string “Heavy security was

in place as U.S. President George W Bush landed in Delhi.”.



Table 2: Bigrams with default window size

Heavy<>security<> |security<>was<>|was<>in<> |in<>place<> place<>as<>
as<>U<> U< <>S<> S<>.<> .<>President<>
President<>George<> George<>W<> |W<>Bush<> |Bush<>landed<> landed<>in<>
in<>Delhi<> Delhi<>.<>

NSP can also be used to identify Ngrams of non-contiguous tokens. This is done by
allowing the user to define a window of k contiguous tokens, using the --window option
in count.pl. The value of k should be greater than or equal to the value of N for the
Ngrams. Now, Ngrams can be formed from any N tokens as long as all these tokens
belong to a single window. Also, all the N tokens should occur in the Ngram in exactly
the same order as they occur in the window. Table 3 shows all the bigrams in the “Heavy
security was in place as U.S. President George W. Bush landed in Delhi.” for a window of

3. In this case each bigram allows for up to one intervening token.

Table 3: Bigrams with window size 3

Heavy<>security<> |High<>was<> |security<>was<>|security<>in<> |was<>in<>
was<>place<> in<>place<> in<>as<> place<>as<> place<>U<>
as<>U<> as<>.<> U<s><> U<>S<> <>S<>
<> S<>.<> S<>President<> |.<>President<> |.<>George
President<>George<>|President<>W<> |George<>W<> |George<>Bush<>|W<>Bush<>
W<>landed<> Bush<>landed<>|Bush<>in<> in<>landed<> in<>Delhi<>
landed<>Delhi<> landed<>.<> Delhi<>.<>




2.3 Counting Ngrams

After all the Ngrams in a given text have been identified, the next step is to count the
number of occurrences of each Ngram in the text. NSP not only counts the number of
times a Ngram occurs in the text file, but it also counts all the unique combinations of the
N constituent tokens, given that each of the tokens occurs in the same position as they
occur in the Ngram. For example in the string “Heavy security was in place as U.S.
President George W Bush landed in Delhi”, for a window of size 3 “George<>Bush<>"

is a valid bigram, but “Bush<>George<>" is invalid.

To represent a particular frequency combination NSP defines a function f{). This function
takes a sequence of integer values as input. In this sequence each integer represents
whether a particular token occurs in its position or not. The function f{) returns the
number of Ngrams in which these tokens occur in their respective positions. For example,
f(0,2) returns the frequency count of the trigrams where only the first and third token
occur in their respective positions. f{0, I, 2) returns the count of the trigram in which all
three tokens occur in their respective positions. By default all such frequency values for a
Ngram are reported. Note that the positions are counted starting at zero. Thus first token

is represented by zero and so on.

For example, let's consider that NSP is used to count bigrams in a text corpus. Figure 2
shows the output of count.pl. The first line of the output denotes the number of total
bigrams in the corpus. In this case this number is 1630855. Please note that the total
number of bigrams in a corpus is not same as the number of unique bigrams, that is this

number also includes repetitions.

The next line and onwards lists all the unique bigrams along with frequency counts

associated with each of these bigrams. For each bigram three numbers are reported. The



first of these numbers denotes the number of times that particular bigram occurred in the
input text file. For example in our sample output the first bigram is “united<>states<>"
and it occurred 3590 times in the input corpus. The next bigram, that is
“atlanta<>journal<>", occurred 2248 times. The second number denotes in how many
bigrams, the token "united<>" occurs as the left most token. Similarly the third number is

the count of the bigrams in which “states<>" occurs as the second token.

1630855

united<>states<>3590 4033 4234
atlanta<>journal<>2248 3634 2469
journal<>constitution<>2235 2438 2300
news<>service<>2110 4290 3727
sept<>11<>1912 2198 2916
world<>cup<>1658 4544 3173
white<>house<>1529 2875 2634
cox<>newspapers<>1465 2834 1652
optional<>trim<>1430 2741 1532
1<>2<>1423 10191 5677
story<>filed<>1319 2003 1684
los<>angeles<>1291 1532 1292
york<>times<>1107 3256 2154
coxnews<>com<>1074 1076 4302
palm<>beach<>1055 1127 1531
cox<>news<>996 2834 4090
president<>bush<>986 2629 2759
high<>school<>899 3718 2736
al<>qaida<>845 1874 908
sickle<>cell<>835 837 1106

Figure 2: count.pl output for bigrams

The output of count.pl gives a concise representation of a contingency table for the given
bigram. Contingency tables can be used to analyze the co-occurrence data. The cell
counts ny;, Ny, Ny and ny, are called the observed frequencies. They add up to the total
number of bigrams, that is n,,. The row totals ny,, n,, and column totals n,, ny, are
referred to as marginal frequencies, since they are written in the margins of the table and

represent the row and column sums.



Table 4 is an example of a partially filled contingency table. Only the values that are
available in the output of count.pl have been filled. The cell npy denotes the total number

of bigrams in the input corpus, which is the same as the first line in the count.pl output.

Table 4: A contingency table

states<> |Istates<>
united<> n; = 3590 np n= 4033
lunited Ny Ny Ny,
n, = 4234 ne |0y, = 1630855

Notice that the values for the rest of the internal cells can be computed by using the
existing values. For example we can get the number of times the token ‘“‘united<>”
occurred as the first token of a bigram that does not have the token “states<>" by
subtracting the number of times “united<>" and “states<>" occurred together from the

number of times “united<>" occurred as the first token.

Similarly using the total bigram count and the marginal totals we can compute the values
for the rest of the cells. Table 5 shows the completed contingency table. To build a
contingency table for a bigram, say “united<>states<>", first all the bigrams are extracted
from the source corpus. They are then classified into the four cells of a contingency table,
depending on whether the first token is “united<>" or not and similarly whether the

second token is “states<>"’ or not.

Table 5: Completed contingency table

states<> Istates<>
united<> \n;; =3590| n,, =443 n;,= 4033
lunited | n, = 644 |ny, = 1626178 n,, = 1626822
n, = 4234|n, = 1626621 |n,, = 1630855




The output for trigrams (Figure 3) is also similar to the output for bigrams. As earlier the
first line of the output represents the total number of trigrams in the input corpus. Next all
the trigrams along with the respective frequency are reported. Only in this case there are
seven numbers following each trigram instead of just three for the bigrams. The first
number as before represents the number of times that particular trigram occurred in the
input corpus. In this case the trigram ‘“atlanta<>journal<>constitution” occurs 2235
times. This value corresponds to f(0, 1, 2).

717527

atlanta<>journal<>constitution<>2235 2958 2379 2243 2248 2235 2235
cox<>news<>service<>995 1864 3456 2713 996 995 2110

com<>story<>filed<>721 2580 1575 1477 721 721 1302

palm<>beach<>post<>669 1064 1312 832 1028 669 669

_<>atlanta<>_<>640 7002 1303 16299 677 1351 686

sickle<>cell<>disease<>625 767 970 728 767 625 625
optional<>material<>follows<>574 1714 669 779 574 725 574
newhouse<>news<>service<>509 601 3456 2713 509 509 2110
times<>news<>service<>470 912 3456 2713 470 470 2110

404<>526<>5456<>417 669 659 417 657 417 417

begin<>optional<>trim<>416 530 1248 764 417 417 683

1<>1<>2<>389 7234 6289 3673 642 450 1181
world<>trade<>center<>374 2329 789 1464 419 391 384

Figure 3: count.pl output for trigrams

The next three numbers denote the number of tokens in which the tokens “atlanta<>”,
“journal<>" and “constitution<>" occur as the first, second and third tokens respectively,
that is the values for f{0), f(1) and f{2) respectively. Thus “atlanta<>" occurs as the first
token in 2958 trigrams, journal<> occurs as the second token in 2379 trigrams and
constitution<> occurs as the third token in 2243 trigrams. The fifth number represents the
number of tokens in which the first and the second tokens (i.e. atlanta<> and journal<>)
occur in their respective positions. In this case it happens 2248 times. Similarly atlanta<>
and constitution<> occur as the first and the third tokens 2235 times, and in 2235
trigrams journal<> and constitution<> occur as the second and third tokens respectively.

These values corresponds to f{0,1), f(0,2) and f{ 1, 2) respectively.

10



For a Ngram, the first frequency value that is reported is the number of times the
particular Ngram occurs in the text. The next NC, (i.e. N choose /) frequency values are
H0), f(l), ....., f(n-1). These are the frequency counts of those Ngrams in which only one
of the N tokens occurs in its position. Similarly, next "C, (i.e. N choose 2) frequency
counts denote the combinations f0, 1), f(0, 2), ..... , 0, n-1), f(L2), f(1,3),.......(1n-
1),.....f(n-2,n-1). They represent all the possible Ngrams in which any two of the N tokens
occurs in their respective positions. Similarly, all such possible combinations are
reported. So for each Ngram we end up having a sequence of “"Cyx+ NC, + "C; + "C, +

....... + NCx. numbers. Thus for every Ngram 2"-1 frequency values are reported.

Since all these frequency combinations might not be useful to a user, NSP allows the user
to specify a list of frequency combinations that must be reported by count.pl. The user
can create a file with the inputs to the function f{), to represent which frequency
combinations should be counted. The name of this file is passed to count.pl using the --

set_freq_combo option.

2.4 Identifying Significant Ngrams

Association measures are used to interpret the co-occurrence frequency data for Ngrams.
Program statistic.pl takes as input a list of Ngrams with their frequencies (count.pl
output) and applies a user-selected statistical measure of association to compute a score

for each Ngram.

This score can be used to judge whether the given Ngram is statistically significant or not.
If the tokens of a Ngram do not occur together just by chance, we believe they have some
added meaning or significance. For example “fine<>art<>" or “United<>Nations<>"

have meanings that go beyond the combination of the meaning of their individual tokens.

11



The following measures of association are available in NSP:

e Measures to test bigram frequency counts:

1.

© 0 N L A W

—_ = =
D = O

Dice Coefficient

Fisher's Exact test — left sided
Fisher's Exact test — right sided
Fisher's Exact test — two-tailed
Jaccard Coefficient
Log-likelihood ratio

Mutual Information

Odds Ratio

Pointwise Mutual Information

. Phi Coefficient
. Pearson's Chi Squared Test

. Poisson Stirling Measure

13.

T-score

e Measures of Association for trigram data

1.

2
3.
4

Apart from these measures, NSP also provides a basic framework for building new
measures of association for Ngrams. These new measures should also be implemented as
Perl modules. An implementation of a statistical measure is expected to have at least ones
measure, that is calculateStatistic(). The program statistic.pl calls this method for every
Ngram and passes it a hash containing the frequency values for that Ngram. The method

calculateStatistic() is expected to return a (possibly floating point) value as the value of

Log-likelihood ratio

. Mutual Information

Pointwise Mutual Information

Poisson Stirling Measure

the statistical measure.

12



There are four other methods that are not mandatory, but may be implemented.

1. initializeStatistic()

[\

. getErrorCode()

(9]

getErrorMessage()
4. getStatisticName()

The program statistic.pl calls initializeStatistic() before calling any other method. This
method is used to initialize the statistic. The getErrorCode() method is called by
statistic.pl immediately after every call to method calculateStatistic(). This method is
used by measures to report errors, if any, in the previous operation. In case of an error this

method returns a integer value. Table 6 lists all the possible error codes. If there is no

error a null value is returned.

Similarly, the method getErrorMessage() is used to return a string describing that
describes the error. The fourth method that may be implemented is getStatisticName().

This method is expected to return a string containing the name of the statistic being used.

Table 6: Error Codes for Measures of Association.

Error Code Meaning

101 calculateStatistic() not implemented by the measure.

200 one of the required values is missing.

201 one of the observed frequency comes out to be -ve.

202 one of the frequency values(nll) exceeds the total no of bigrams(npp) or a
marginal total(nlp, npl).

203 one of the marginal totals(nlp, np1) exceeds the total bigram count(npp).

204 one of the marginal totals is -ve.

211 & 221 |one of the expected values is zero.

212 one of the expected values is -ve.
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To aid the implementation of the statistical measures, Text::NSP::Measures::2D and

Text::NSP::Measures::3D provide three methods, namely:
1. computeObservedValues()
2. computeMarginalTotals()
3. computeExpectedValues()

These methods can be called from within the calculateStatistic() method of any bigram
or trigram measure to compute the marginal totals, observed and expected frequency
counts for each Ngram. These measures also perform basic error checks on these values,
and in case of an error they return a null value, otherwise 1 is returned to indicate

success. Appendix A provides a sample implementation of a measure.

Once the statistical scores for all the Ngrams have been computed, statistic.pl ranks them
in the descending order of these scores. By default the scores are reported to a precision
of 4 decimal places, but users can adjust this by using --precision option with count.pl. In
case two Ngrams have the same score they are ranked in the descending order of their
observed frequency counts. Also, users can specify a statistical score cutoff for Ngrams,
by using the --score option with statistic.pl. Any Ngram that has a statistical score which
is less than this cutoff will not be ranked. Similarly, a frequency cutoff may also be
defined by using the --frequency option which will remove any Ngram with a frequency

less than this value.

2.5 Comparing Measures of Association

The program rank.pl allows a user to compare two measures of association. It uses the
Spearman's Rank Correlation Coefficient to determine how different two ranked lists of
Ngrams are. It is assumed that the two lists rank the same set of Ngrams. The Spearman's

Rank Coefficient uses the ranks of the Ngrams to compute the Correlation between the
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two lists. The Spearman's Rank Correlation Coefficient is defined as:

i=n

2
i=1 Di

r=1-62
n(n"—1)

Here D is the difference between the ranking of Ngram i, n is the sample size, or the
number of Ngrams in the list. The value of the Spearman Correlation Coefficient » ranges
from +1 to -1. A value of 0 indicates no correlation between the lists, where as a value of
+1 indicates complete correlation. A positive value indicates positive correlation and a
negative value indicates negative correlation. For example the Rank Coefficient for the

two lists of Ngrams shown in Table 7 is 0.0333 which indicates that there is very little

correlation between them.

)

Table 7: Sample input for rank.pl

1922

entirely<>harmless<>1 9.3234 3 3 3
become<>admirable<>2 8.9084 14 1
human<>beings<>3 8.58653 5 3
afford<>her<>4 74490 1 1 11
actually<>prevent<>5 7.3234 12 6
independent<>person<>6 6.9084 2 8 4
contemporary<>life<>7 6.0015 5 6 25
convenient<>life<>8 5.5276 3 5 25
to<>be<>9 3.9311 8 63 16

1922

entirely<>harmless<>1 44.7704 3 3 3
contemporary<>life<>2 39.0979 5 6 25
human<>beings<>3 38.0403 35 3
to<>be<>4 34.0031 8 63 16
convenient<>life<>5 19.7402 3 5 25
independent<>person<>6 16.9398 2 § 4
become<>admirable<>7 12.6230 1 4 1
afford<>her<>8 10.4197 1 1 11
actually<>prevent<>9 8.9476 1 2 6
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3 Association Measures

Association measures are used to interpret the co-occurrence frequency data for Ngrams.
They assign a real valued score to each Ngram, which can be used to judge whether the
tokens that make up the Ngram occur together more often than expected by chance. This

is useful in identifying collocations and other interesting Ngrams.

3.1 Model of Independence

Most measures of association try to compare a contingency table of observed values with
one of expected frequency counts. The expected frequencies for a contingency table are
estimated based on a hypothesized model which in this case is the model of
independence. The hypothesis for this model is that the tokens in a Ngram happen to co-
occur purely by chance (i.e. are independent). For bigrams there is only one such
hypothesis, that is the two tokens in the bigram have occurred together only by chance, or
in other words the probability of the two tokens occurring together is equal to the product

of their individual probabilities:

P(tokenl , token2)=P (tokenl)* P (token2) ()

Under this hypothesis the expected frequencies for bigrams can easily be computed using
the marginal totals and the total Ngram count. Table 8 shows how expected values for a 2

X 2 contingency table are computed.

Table 8: Contingency table with expected values

token2<> Itoken2<>
tokenl<> |m; = (n, * ny,)/n,, My = (e * ny,)/ng, n,
Itokenl<> | m; = (ny, * nyp)/ny, | My, = (N ™ Npp)/My, Ny
Npi Np> Npp
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For Ngrams with N>2 there is more than one possible model that can be used. For
example for trigrams the hypothesis could be that all the three tokens are completely
independent of each other (formulation 3), or it could be that two of the three tokens are
dependent on each other but are independent of the third (formulations 4,5,6). All four

hypothesis will result in different models. It is possible to use all of these models in NSP.

P(tokenl ,token2, token3)= P (tokenl)* P (token2)* P (token3) 3)
P(tokenl ,token2, token3)= P (tokenl)* P (token2, token3) 4)
P(tokenl ,token2, token3)= P (tokenl ,token2)* P (token3) (35
P(tokenl ,token2, token3)= P (tokenl ,token3)* P (token2) (6)

3.2 Hypothesis testing

The measures that come under Hypothesis testing are Fisher's Exact tests, Pearson's Chi-
squared test, Log-likelihood measure and the t-score. These measures formulate a null
hypothesis that all the tokens of a Ngram are independent of each other. Then they test a
Ngram to see if there is significant evidence to refute this hypothesis. If enough evidence
is not found then the hypothesis is accepted, and the Ngram is said to be statistically

insignificant and not interesting.

3.2.1 Fisher's Exact tests (*)

Pedersen[1] suggested to use Fisher's Exact test as an association measure for identifying
collocations, arguing that it is more accurate than tests such as Pearson's Chi squared test
and Log-likelihood ratio that make asymptotic assumptions. Fisher's Exact tests compute
the probabilities of all possible contingency tables, whose internal cell counts (i.e. ny;, nj,,
ny and nyy) sum up to the observed marginal totals. These probabilities can then be used

to check the significance of the observed contingency table.
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Fisher's Exact tests are only computationally feasible for 2 x 2 contingency tables, so they

are only available for bigrams in NSP.

In Fisher's Exact tests hypergeometric probabilities for all the possible contingency tables
are computed by fixing the marginal totals (i.e. n;,, n,i, Ny, N and ny,). The possible
contingency tables are then generated by considering possible values for nj;. The value of
n;; determines the values of nj,, ny; and ny,. Once all the values for a possible contingency
table have been determined the probability of witnessing a contingency table whose
internal cells sum up to the observed marginal totals can be computed using the following

equation.

| | | |
pe 1 Mt !
n'n,ln,'n,,! n

(7)

!
pp

For example consider the following contingency table.

Table 9: A Contingency table

token2<> ltoken2<>
tokenl<> n; =4 np=2 n, =6
ltokenl<> n =4 ny» =10 n, =14
n,=38 m, =12 n,, =20

For the given marginal totals, there are seven possible contingency tables, since the
possible values for the cell n;; are 0, 1, 2, 3, 4, 5 and 6. Given the marginal totals (n;, = 8,
n, =6, n, = 12, n,, = 14 and n,, = 20), table 9 lists the probabilities of finding these

observed counts.
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Table 10: Probabilities for the possible contingency tables.

Values in the internal cells | Probability
n;=0,n,=6,n; =8, np=6 0.024
n=Ln,=5n,=7n,=7 0.163
np=2,n,=4,ny=6,npn=38 0.357
n=3,n,=3,n;=5n,=9 0.318
np=4,n,=2,ny, =4, n, =10 0.119
np=5n,=1,1n =3, n,=11 0.017
n;=6,n,=0,ny, =2, ny =12 0.001

There are three Fisher's Exact tests (left sided, right sided and two-tailed), the first two of

these are one sided, while the third is a two sided test.

The left sided test is calculated by adding the probabilities of all the possible two by two
contingency tables where the count in cell n,; is less than or equal to the observed value.
A left sided Fisher’s Exact test tells us how likely it is to randomly sample a table where
n;; is less than observed value. In other words, it tells us how likely it is to sample a
contingency table where the two tokens are less dependent than currently observed. A
high probability value indicates that the particular bigram is significant, and hence we can
dismiss the null hypothesis. In our example this value comes out to 0.981, which suggests

that the two tokens occur more frequently than expected by chance.

The right sided Fisher's test is calculated by adding the probabilities of all the possible
two by two contingency tables where the cell count n;; is greater or equal to the observed
value. A right sided Fisher's Exact test tells us how likely it is to randomly sample a table
where ny; is greater than the observed frequency count, that is it tells us how likely it is to

sample an observation where the two words are more dependent than currently observed.
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If this probability values is small it indicates that the two tokens are dependent on each
other hence they do not occur just by chance. For our example the right fisher value is
0.137. Since this value is very small it indicates that the two tokens occur together more
frequently than expected by chance and hence we can dismiss the null hypothesis. Thus

this bigram is considered to be interesting.

The two-tailed Fisher's test is calculated by adding the probabilities of all the contingency
tables whose probabilities are less than or equal to the probability of the observed table.
This test tells us how likely it would be to observe a contingency table which is less
probable than the observed table under the null hypothesis. Although the value given by
this measure cannot be directly used to test the null hypothesis, it still gives us some
information about the pair of tokens. If this value is very high, it indicates that the
probability of witnessing the observed table under the null hypothesis is very high, that is
the two tokens are independent of each other. Thus a high value might suggest that there

is not enough evidence against the null hypothesis.

Implementation of Fisher's Exact tests

A simple implementation of Fisher's Exact tests generates all possible contingency tables
for the given marginal totals and computes the probability for each of these tables using
the formulation given in equation (7). Since the complexity of computing factorials
increases exponentially, a simple implementation of Fisher's Exact tests 1is

computationally intensive specially if the number of possible contingency tables is high.

The new implementation of Fisher's Exact tests in NSP done for this project overcomes
this problem by using the probability of the contingency table with n;, = i to compute

probability of contingency table where n;, = i+1.
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First, the probability of the contingency table with smallest possible n; count is

calculated. The probability value is then used to compute the probability of rest of the

gives the smallest value that

contingency tables. The expression max {0, n,+n,—n pp}

can be assigned to n; for the given marginal totals. Once probability of the first
contingency table has been computed, it is used to compute probability of rest of the
possible tables. This is achieved by incrementing n;; by a value of 1 and adjusting the rest

of the observed frequency values accordingly. Now the probability of the previous table is
multiplied with n,,*n, /n, *n,, to get the probability of the new table. This process is
repeated until the probabilities for all the possible contingency tables have been

computed.

sub computeDistribution()

{
$nll_start = shift @_; #get smallest nll value
$final_limit = shift @_;  #get maximum nll value

#compute probability for first table.
my $product = computeHypergeometric($d);

#hash to store all probability values
my Yoprobability;
S$probability{$d} = $product,

#compute values for remaining contingency tables
for ($i = $nll_start+1; $i <= $final_limit; $i++ )
{

$subproduct += log $ni2;
$n22++;
$subproduct -= log $n22;
Ssubproduct += log $n2l;
$ni2--;
$n21--;
$subproduct -= log $i;
Sprobability{$i} = Sproduct+$subproduct;
Sproduct = $product+$subproduct;
$subproduct=0;

}

return \%probabiliy;

/

Figure 4: Function to compute probability distribution for all possible tables
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Since values associated with bigram data are generally very large, direct division of terms
can result in an underflow error causing the intermediate value to be rounded down to
zero. Hence any further multiplications or divisions to this value will also result in a zero.
Similarly, multiplication can cause an overflow, resulting in an invalid value. To avoid this
all computations are done using logarithms to base e, and all multiplication and division

operations are replaced with addition and subtraction operations respectively.

sub computeHypergeometric()

{
my $d = shift @_; # nll value for the contingency table
my Sprobability = 0 #initialize the variable to hold the result

#initialize and sort the numerator and denominator arrays
my @numerator = sort { $b <=> $a } ($nlp, $npl, $n2p, $np2, 1);
my @denominator = sort { $b <=> $a } ($Snpp, $n22, $ni2, $n2l, $d);

#compute probability
for (my $i = 0; $i <=4; $i++ )

{
if ( $numerator[$i] > $denominator[$i] )
{
for (my $j = $3denominator[$i]+1; $j <= $numerator[$i], $j++)
{
Sprobability += log(%j);
}
/
else
{
for (my $j = $Snumerator[$i]+1; $j <= $denominator[$i], $j++)
{
$probability -= log($j);
/
/
/

return $probability;

Figure 5: Function to compute hypergeometric probability
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Figure 5 lists the implementation of a function to compute the hypergeometric
probability. To reduce the amount of computations required to calculate hypergeometric
probability for the first table, the factorial terms in numerator and denominator of

equation (5) are canceled out.

Figure 6 shows a chart that compares the performance of our implementation with a
simple implementation of Fisher's Exact test. As it can be seen in the chart there is a

significant improvement in performance.

Fisher's Exact test
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Figure 6: Performance of left sided Fisher's Exact test

3.2.2 Pearson's Chi squared test

In mathematical statistics, the standard asymptotic test for independence is Pearson's Chi
Squared [3] test. It compares the observed frequencies n; with the expected frequencies
m; under the null hypothesis of independence. If the difference between observed and
expected frequencies is large, then the null hypothesis is rejected. The Pearson's Chi

squared test is defined as

Xz_z (nij_mij)2 8

y
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For large samples, the test statistic of Pearson's Chi-squared test has an asymptotic X*
(Chi-squared) distribution with one degree of freedom. The Pearson's Chi squared
measure can easily extended to Ngrams of any size. Equation (9) shows the formulation
for trigrams. The Pearson's Chi Squared test is more accurate than the Log-likelihood
measures for sparse contingency tables.

2
2= Z (n,;,-k—m,;,-k)
I M

)

i,

3.2.3 Log-likelihood ratio

The Log-likelihood [2] ratio checks the probability of sampling the observed contingency
table under the null hypothesis, that is the tokens occur together by chance and are
independent of each other. The more unlikely it is to witness the given table, the more

evidence against the null hypothesis. The log-likelihood measure can be computed as:

n..
N=2%) n *log— (10)
ij m,

ij
Note that the the logarithm is undefined when there are empty cells (n; = 0). For such

cells, the entire term evaluates to zero, because 0*log(0) = 0, and can simply be omitted

from the summation.

Dunning (1993) [2] showed that the accuracy of Log-likelihood measure is better than
Pearson's Chi Squared test for highly skewed contingency tables, like the ones observed in
Ngram co-occurrence data. The Log-likelihood can also easily extended to Ngrams of

any size. The following equation gives the computation for trigrams.
L
N=2x ) n,*log—* (11)

ijk ijk

Similarly the Log-likelihood measure can be extended for longer Ngrams.
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3.2.4 T-score

The t-score [4] is a heuristic variation of z-score which itself is an approximation of the
Binomial Exact test. The z-score measure uses the normal distribution to approximate the
binomial probability of all possible contingency tables for which the expected value my; is

greater than the observed frequency count ny;.
(ny,—m,,)
\/m“
However the z-score tends to overestimate Ngrams with low expected values. The cause
of this problem is the presence of m;, in the denominator. Here \/ m—ll 1s used to
approximate the variance of the distribution under the null hypothesis. The t-score solves
this problem by estimating this variance using the observed sample. The t-score is
computed as:
(ny—my)
t—score =——"~ (13)
VI
The t-score measure can also be extended to Ngrams of any size. For trigrams the

computation is:

(
N (14)

3.3 Mutual Information based measures

The Mutual information based measures are motivated from Information Theory. They
try to measure the reduction in uncertainty of one random variable due to the knowledge
about another random variable. In other words, they try to measures the amount of
information one random variable provides about the other. Here we can assume the

tokens in a Ngram being represented by variables
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3.3.1 Pointwise Mutual Information (*)

The use of Pointwise Mutual Information(PMI) as a measure to identify Ngrams was
proposed by Church and Hanks [6]. Pointwise Mutual Information measures the overlap
between two events. In other words it measures the amount of information the occurrence
of an event provides about the occurrence of another event. For example, consider the
bigram united<>states<>. Pointwise Mutual Information will quantify the increase in the
amount of information we have about the occurrence of states<> at position i+/ in the
corpus, if we know that united<> occurs at position i. The Pointwise Mutual Information

is defined as:

P (tokenl , token2)

PMI=1 1
©8 P (tokenl )P (token2) (15)
The probability P(fokenl, token2) can be computed as:
ny,
P(tokenl ,token2)=— (16)

nPP

and the probabilities P(tokenl) and P(token2) are given by n,/n,, and n,,/n,, respectively.

Under null hypothesis the expected value can be computed as:

n, *n
=) (17)

n pp

Substituting equations (16) and (17) in equation (15) gives us the following computation

for PMI.

PMI=1log (1) (18)
my,

The Pointwise Mutual Information tends to overestimate Ngrams with low observed
frequency counts. To prevent overestimation of low frequency data, the PMI measure can

be modified by increasing the influence of the observed co-occurrence frequency nj; in
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the numerator. This is done by raising the observed co-occurrence frequency by some
exponent e, where e > 1. Daille(1994) [12] considered versions of PMI with e = 2....10,

obtaining the best performance for e = 3.

PMI=log - (19)
my,

The implementation of Pointwise Mutual Information measure was modified in NSP to
accept a floating point parameter e. If no value for e is provided, the measure computes
the standard PMI statistic. Otherwise the value e is used to compute the modified
Pointwise Mutual Information. The program statistic.p! was also modified to provide a
new command-line option --pmi_exp. This option is only available for the PMI measure

and can be used to specify the e value to compute the modified PMI statistic.

3.3.2 True Mutual Information

True Mutual Information tries to measure the amount of information one random variable
provides about the other. True Mutual Information can also be defined as the weighted

average of the pointwise mutual information for all the observed and expected value pairs.

TMI= P(xy)*log% (20)

Under our hypothesized model the above mentioned computation can be simplified to

n..
TMI=) n, *log—L (1)
i m;
The true mutual information measure is nearly identical to the Log-likelihood ratio test.

In fact they only differ by a factor of 2 and as such produce identical rankings.
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3.4 Measures of association strength

These measures test the degree of association between two random variables. They are
not measures of association in the statistical sense as they do not assign a significance
score. Instead they try to measure how correlated two or more variables are. In our case

these variables represent tokens in a Ngram.

Measures of degree of association are not effected by the sample size where as the
measures belonging to other families are effected by the sample size. That is, The
measures of degree of association are not affected if the values in the contingency table
are modified, while maintaining the proportions of the contingency table. For example
the values generated by these measures will remain the same even if we multiply all the
cells in a contingency table by a factor of 10. Thus these measures must be used for the

data where the user wants to nullify the effect of the sample size.

3.4.1 Dice Coefficient

The Dice Coefficient was first used by Smadja(1999) [3] for the extraction of collocations
from text corpora. The Dice Coefficient computes the harmonic mean of the marginal
totals n;, and n,;. A higher value for the Dice Coefficient indicates that the two tokens do

not occur together by chance and hence the bigram is significant.

Dice—= 2%n,
ice——m—— (22)

n]p—i-np,

The Dice coefficient can be easily extended to Ngrams. The computation for trigrams is:

. 3*n,y,
Dice= (23)
nlpp+ np1p+ nppI
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3.4.2 Phi Coefficient

The Phi Coefficient is a measure of the degree of association between two binary
variables. For bigrams, these variables represent tokens in a bigrams and indicate whether

or not a particular token occurs at its position or not.

The Phi Coefficient is computed as:

Ny ¥y =N %Ny,

phi= (24)

\/nlp*npl*nZP*an

Church(1991)[11] used phi* instead of phi to identify collocations in text corpora.

(nll*nzz_nlz*n21)2

(25)

phi2=

Ny ¥0, %10, %0,

The phi* measure is equivalent to Pearson's Chi-Squared test multiplied by the sample

size.

X’=n, *phi’ (26)

3.4.3 0Odds Ratio

For a bigram this measure computes the ratio of odds of witnessing the second token with
the first token to the odds of witnessing second token occurring with some other token.
The odds of witnessing the second token with the first token are given by nj/n..
Similarly the odds of witnessing the second token with some other token are given by

n21/n22.

ES
odds="1""2 27)

Ny, %1y,

29



This measure is not very effective in identifying bigrams, this is so because one of the
numerators is the value in cell n,,, which is generally very large for bigram data. Also,
intuitively this measure may not be suited for identifying collocations, because it
measures the chances of witnessing the second token with the first token rather than

measuring the chances of the two tokens occurring together.

The value of odds-ratio is undefined when one of the non-diagonal cells has a count of
zero, n;p = 0 or ny = 0. To avoid this, the NSP implementation of the odds ratio adds 1 to

each of the cell counts, before the ratio is calculated.

3.4.4 Jaccard Coefficient (*)

The Jaccard Coefficient computes the ratio of the bigram frequency count to the number

of times at least one of the constituent tokens occurs in the correct position.

The Jaccard Coefficient is computed as:

n
Jaccard=—-—""—— (28)
nytn,+n,

The Jaccard and Dice Coefficients are similar to each other. In fact, there is a monotonic

transformation from Dice Coefficient to Jaccard Coefficient.

Dice
J d =
accar >~ Dice (29)

The Jacccard Coefficient is frequently used in Information Retrieval as a measure of

association. It is used to measure the degree of association between two variables.
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3.5 Likelihood Measures

Likelihood measures try to estimate the probability of seeing a observed contingency
table under the null hypothesis that the tokens in a Ngram occur together by chance and

are independent of each other.

The smaller this probability, the more unusual the observed outcome and, consequently
more evidence against the null hypothesis. These measures use the probability of the

observed frequency table as a measure of the evidence against the null hypothesis.

3.5.1 Poisson-Stirling Measure(*)

Poisson Stirling [13] is a Likelihood measure. The Poisson Stirling measure uses the
Stirling's formula to approximate the negative logarithm of the Poisson-likelihood

measure. It is defined as follows:

n
Poisson— Stirling=n,,* (log ———1) (30)

11

The Poisson likelihood measures uses Poisson distribution to approximate the binomial

distribution of witnessing the tokens in a Ngram together.

ny

. m
Poisson—likelihood =e "% L' (31)
n,,!

The results calculated using Poisson-Stirling measure are comparable to the Log-
likelihood ratio, even though it is computationally similar to the Pointwise Mutual

Information measure.
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4 Redesign of NSP

Significant changes have been made to how measures of association are implemented in
NSP. There were three main goals for this redesign, first to make the implementation of
measures in NSP conform to CPAN' guidelines for writing modules. CPAN is
Comprehensive Perl Archive Network, a repository for Perl software. The second goal
was to improve the maintainability of the implementations by reducing the amount of
code duplication. The third goal was to makes it easier for users to implement new
measures of association. The measures in NSP were originally designed to be used only
with statistic.pl. This redesign also makes it possible for users to use the measures of
association directly from within their programs. Since many applications have been built
over NSP, special care was taken to keep these changes transparent to the existing users of
NSP. So significant changes have been made to statistic.pl to allow a smooth transition to
the new implementation. Also, we did not want any decline in the performance of the

measures.

As stated earlier, in NSP all measures are implemented as Perl modules. CPAN requires
that all modules are implemented in the name space declared by the software package. To
minimize name space collisions, Perl provides a hierarchal name space for modules.
Components of a module name are separated by double colons (::). For NSP the name
space is Text::NSP. In the previous implementation (NSP-0.73 and before) all measures
were implemented directly under the global name space. Apart from making the
implementation non compliant to CPAN this also resulted in significant amount of code
duplication. Also, it made it difficult for users to implement new measures. The previous
implementation (NSP-0.73 and before) provided two modules, measure2d and measure3d,
that implemented methods to compute the observed and expected frequency counts for

bigrams and trigrams respectively.

(1) CPAN website: http://www.cpan.org
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4.1 Design of NSP-0.95

In this implementation all the measures of association were rewritten using Object
Oriented Concepts. Text::NSP::Measure is the base class for all the measures. It lays
down the groundwork for implementing measures of association. It implements the
framework that allows measures to report errors to statistic.pl. This module also provides
an abstract implementation of methods that must be overridden by all the measures. Two
modules: Text::NSP::Measure::2D and Text::NSP::Measures::3D, are derived from
Text::NSP::Measures. These modules provide the basic framework for implementing

measures for bigrams and trigrams respectively.

Text::NSP

Text::NSP::Measures

+calculateStatistic()
+initializeStatistic()

E: +getErrorCode(): int :j

+getErrorMessage(): String

+getStatisticName()
Text::NSP::Measures:: 2D Text::NSP::Measures:: 3D
+computeOhservedvalues(): int +computeObservedvalues (): int
+computeExpectedvalues(): int +computeExpectedvalues(): int
+computeMarginalvalues(): int +computeMarginalvalues(): int

Figure 7: Class diagram of basic framework

Both Text::NSP::Measures::2D and Text::NSP::Measures::3D implement methods to
compute the marginal, observed and expected frequencies for a given Ngram. They also
implement some basic error checks that are common for all measures. For example
Text::NSP::Measures::2D checks whether the computed marginal totals are valid, that is

no marginal total is less than zero or greater than the sample size.
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All bigram measures inherit from Text::NSP::Measures::2D, while the trigram measures
inherit from Text::NSP::Measures::3D. Both of these classes are abstract and hence

cannot be instantiated.

411 Bigram Measures

There are thirteen measures of association for bigrams available in NSP. Measures that
are computationally similar have been grouped together under one family. The
computations and error checks that are common to each family of measures have been

implemented in the base class for that family.

Text::NSP::Measures

+$errorCode
+$errorMessage

+new()
+calculateStatistic()
+initializeStatistic()
+getErrorCode( )
+getErrorMessage()
+getStatisticName ()

i

Text::NSP::Measures:: 2D

_D +newl ) <]—

+computeObservedvalues()
+computeExpectedvalues()
+computeMarginalvalues()

A

Text::NSP::Measures::2D::Dice Text::NSP:: Measures:: 2D:: CHI

+calculateStatistic()
+computeVal()

+calculateStatistic()

Text::NSP::Measures:: 2D:: M|

+calculateStatistic()

+computePMI ()
Text::NSP::Measures:: 2D::Fisher Text::NSP::Measures:: 2D::odds
+calculateStatistic() +calculateStatistic()
+computeDistribution () +getStatisticName ()
+computeHyperGeometric ()

Figure 8: Class diagram for Text::NSP::Measures::2D

34



The measures that did not belong to any family (like the Odds Ratio) have been

implemented directly under Text::NSP::Measures::2D.

The module Text::NSP::Measures::2D::MI is the base class for Log-likelihood, Total
Mutual Information, Pointwise Mutual Information and Poisson-Stirling measures.
Text::NSP::Measures::2D::MI is a abstract class, hence it cannot be instantiated. This
class implements a method to test the values computed by Text::NSP Measures::2D for

errors that are specific to these measures.

Text::NSP::Measures:: 2D:: Ml

—{>|+calculateStatistic() <——
+computePMI ()
Text::NSP::Measures:: 2D::Ml::pmi
Text::NSP::Measures:: 2D:: Ml tmi ier
p
+calculatestatisticl) +initializeStatistic()
+getStatistichane() +calculateStatistic()
+getStatistichame()
Text::NSP::Measures:: 2D::MI::ll Text::NSP::Measures:: 2D::Ml::ps
+calculateStatistic() +calculateStatistic()
+getStatisticName() +getStatistichane()

Figure 9: Class diagram for Text::NSP::Measures::2D::MI

Text::NSP::Measures::NSP::MI also implements a method to compute the log of the ratio
of a pair of values. This is the same as computing Pointwise Mutual Information for a
given cell in the contingency table. This computation is common in all the measures

implemented under this class.
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The module Text::NSP::Measures::2D::Fisher is the base class for the Fisher's Exact tests.
It implements methods to compute the probabilities of all possible contingency tables for
the observed marginal totals. This method returns a hash containing all these probability

values.

Text::NSP::Measures::2D::Fisher

—Dv +calculateStatistic()

+computeDistribution ()
+computeHyperGeometric ()

Texti:NSP::Measures::2D::Fisher::left

+calculateStatistic()

+getStatisticName ()

Text::NSP::Measures:: 2D::Fisher::twotailed Text::NSP::Measures:: 2D::Fisher::right
+calculateStatistic () +calculateStatistic()

+getStatisticName () +getStatisticName ()

Figure 10: Class Diagram for Text::NSP::Measures::2D::Fisher

Text::NSP::Measures::2D::Dice is the base class for implementing the Dice and Jaccard
Coefficient measures. This module provides a method to compute the value for the Dice
Coefficient. Text::NSP::Measures::2D::Dice::dice simply calls this method and returns
the values computed in Text::Measures::2D::Dice, while the implementations of the
Jaccard coefficient, Text::NSP::Measures ::2D::Dice::jaccard, applies a transformation to

the value of Dice coefficient to get the result.

Text::NSP::Measures:: 2D::Dice

+calculateStatistic()

i

Text::NSP::Measures:: 2D::Dice::jaccard Text::NSP::Measures:: 2D::Dice::dice
+calculateStatistic() +calculateStatistic()
+getStatisticName () +getStatisticName ()

Figure 11: Class diagram for Text::NSP::Measures::2D::MI::Dice
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Text::NSP::Measures::2D::CHI is the base class for Pearson's CHI squared, Phi
coefficient and the t-score measures. It implements some error checks that are common

for these set of measures.

Text::NSP::Measures:: 2D:: CHI

+calculateStatistic()

+computeVal ()
Texti:NSP::Measures:: 2D CHIit x2 Text::NSP::Measures:: 2D:: CHI:: phi
+calculateStatistic() +calculateStatistic()
+getStatisticMame () +getStatistichame ()

Text::NSP::Measures:: 2D:: CHI:: tscore

+calculateStatistic()
+getStatisticMame ()

Figure 12: Class diagram for Text::NSP::Measures::2D::MI::CHI

41.2 Trigram Measures

In NSP, there are four measures of association available for trigrams. All these measures
inherit from a single class, Text::NSP::Measures::3D::MI, which in turn inherits the
functionality implemented in Text::NSP::Measures::3D. As in the bigram implementation
Text::NSP::Measures::3D::MI is the base class for Log-likelihood, Total Mutual
Information, Pointwise Mutual Information and Poisson-Stirling measures. This class

provides error checks that are common for these measures.

4.2 NSP-0.97

Perl originated in 1987 and was not originally designed as an objected oriented language.
Support for object oriented programming was introduced in Perl5 which was released in

1994. This support was build on top of the existing Perl components.
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As a result of this, object-oriented Perl isn't as fast as non object-oriented Perl [14].
Calling a method through an object is significantly slower than calling a regular Perl
subroutine. A single method call can be about 30 percent slower than a regular call to the
same subroutine. Since all measures in NSP-0.95 were implemented using object oriented
Perl, this resulted in a significant slowdown of performance when compared to the earlier

versions.

NSP-0.97 addressed this issue by modifying the implementation of measures to not use
object oriented features available in NSP. This paradigm shift required some major
changes to the implementation of the measures, since object oriented features like
polymorphism and inheritance could not be used any longer. This was achieved by
importing the required subroutines and variables from the modules higher in the
hierarchy. This basic functionality for implementing measures is implemented in the
higher modules. If a measure needs to extend this functionality. It can redefine the

subroutine that implements this functionality.

We compared the performance of Log-likelihood implementation in NSP-0.73, NSP-0.95
and NSP-0.97. For this comparison we ranked 5 lists of bigrams consisting of 20000,
40000, 60000, 80000 and 100000 bigrams respectively. Figure 13 shows the profile

results thus generated.

To generate these profile results we used the Devel::DProf Perl module. This module
collects information on the execution times of Perl scripts and subroutines. This
information is then written to a file named fmon.out. This data can then be further

analyzed using the program dprofpp. Appendix C shows a sample output from dprofpp.
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Profile Results

w
(6]
o [ NSP-0.97
= [ NSP-0.73
£ [l NSP-0.95
=

20,000 40,000 60,000 80,000 100,000

No. of bigrams
Figure 13: Profile results for Log-likelihood measure in NSP-0.95 and NSP-0.97

As seen in Figure 13 there is a significant improvement in the performance of NSP-0.97
as compared to NSP-0.95. But there is still some slowdown in the performance of the
measures. This is because the current implementation requires more subroutine calls,
which causes some extra overhead. This cannot be avoided because these subroutines

were defined to reduce the amount of code duplication across the measures.
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S5 Experimenal Results

The algorithms and new measures described in this project report were tested using a
subset of the New York Times Newswire Service data available from the English
Gigaword Corpus, which was produced by the Linguistic Data Consortium. It consists of
newswire text data collected from four newswire services, the Agency France Press
English services (AFPE), Associated Press Worldstream English Service (APW), Xinhua
News Agency English Service (XIE) and the New York Times Newswire Service (NYT).

For our experiments we used the New York Times data from the year 2002. It has
200,000 lines of text and approximately 8,000,000 tokens. We used count.pl to count all
the bigrams in this corpus. We used a standard English stop list to remove the non-content

words in this corpus. This list can be found in Appendix B.

5.1 Spearman's Rank Correlation Coefficient

We compared the new measures of association that have been incorporated in NSP, by
comparing their results with those of the Log-likelihood measure. This measures was
used as the standard because it is one of the most popular measures of association, thus
comparing the new measures of association with Log-likelihood measure will allow us to
make some observations about the how the measures perform and also about how these
new measures can be useful. For this purpose we used the program rank.pl to compute the
Spearman's Rank Coefficient between the output of the new measure and output from the

Log-likelihood measure.
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5.2 Two-tailed Fisher's Exact Test

Table 11 shows the top ten bigrams identified by the two-tailed Fisher's Exact test. None

of the bigrams in this list seem interesting at least in an intuitive way.

Table 11: Top ten bigrams identified by two-tailed Fisher's Exact test

_<>1<>11.0000 52 11288 7599

art<>_<>1 1.0000 20 1288 26470
_<>bush<>1 1.0000 19 11288 2759
play<>_<>1 1.0000 14 915 26470
administration<>_<>1 1.0000 13 861 26470
internet<>_<>1 1.0000 12 775 26470
minute<>_<>1 1.0000 9 603 26470
board<>_<>1 1.0000 9 588 26470
x_<>life<>1 1.0000 9 11288 1349
record<>_<>1 1.0000 9 591 26470

The value for Spearman's Rank Correlation coefficient for the two-tailed test is -0.7444.
which indicates that there is a negative correlation between the ranks of the bigrams

generated by the two-tailed test and the Log-likelihood measure.

5.3 Pointwise Mutual Information

We compared variations of Pointwise Mutual Information measure. Table 12 shows the
top 10 bigrams identified by Pointwise Mutual information for the values e =1, 2, 3. As it
can be seen there are some significant changes in the list of bigrams. Thus by changing
the value of e users can identify different sets of bigrams. Intuitively the list of bigrams
for e=3 is appealing as this corresponds most closely to what we would think of as

collocations.
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Table 12: Top ten bigrams identified by variations of PMI

PMI for e=1 PMI with e=2 PMI with e=3
jeroboam<>methuselah<> 5887<>toder<> united<>states<>
pteridologists<>botanically<> | 8334<>andya<> journal<>constitution<>
uptempo<>polyrhythmic<> | 8320<>chuckh<> atlanta<>journal<>
steerage<>cavernous<> 8338<>artd<> sept<>11<>
jeev<>milkha<> 8348<>rickm<> los<>angeles<>
3s<>ae32i<> 7282<>agordon<> news<>service<>
buyable<>guilder<> kollar<>kotelly<> optional<>trim<>
caine<>mutiny<> hospitalization<>nns14<> | cox<>newspapers<>
algernon<>moncrieff<> amorim<>sicherle<> story<>filed<>

We also compared variations of the Pointwise Mutual Information with the Log-
likelihood ratio, by computing the Spearman's Rank coefficient. As it can be seen from
the list of bigrams, different values of e can be used to identify different sets of bigrams.
Smaller e values, like 1 and 2, can be used to identify rare bigrams, since these variations
tend to overestimate bigrams with lower frequency counts where as the values 3 and 4

may be used to identify significant bigrams that occur more regularly.

1.0000
- 09000 -
o
o
£ 08000
2
= 07000
e
3 06000 - We-i
é We-2
= 05000 We-3
c =4
S 04000 :: .
b= He-=6
S 03000 -
o
X 02000
o
O 0.1000

0.0000 |

PMI

Figure 14: Spearman's Rank Coefficient
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5.4 Jaccard Coefficient

The Spearman's Rank Coefficient between the output of Jaccard Coefficient and Dice
Coefficient is 0.9998. Such a high value indicates that these measures are almost identical
and could be used interchangeably. This is not surprising given the the formulation of the
Jaccard coefficient. The Spearman's Rank Coefficient for Log-likelihood measure and
Jaccard was 0.8008, which is fairly high and the positive correlation means that Jaccard
Coefficient is quite similar to the Log-likelihood measure. This is not entirely
unexpected, even though the formulation of Log-likelihood and Jaccard are quite

different.

5.5 Poisson-Stirling Measure

The Rank Correlation Coefficient for Poisson-Stirling measure and the Log-likelihood
measure is 0.9968. Such a high positive correlation indicates that the two measures are
quite similar. Table 12 shows the top ten bigram identified by the Poisson-Stirling

measure.

Table 13: Top ten bigrams identified by Poisson-Stirling

united<>states<>1 17366.1016 3590 4033 4234
journal<>constitution<>2 12241.1258 2235 2438 2300
atlanta<>journal<>3 11268.6698 2248 3634 2469
sept<>11<>4 9918.0198 1912 2198 2916
news<>service<>5 9224.1969 2110 4290 3727
los<>angeles<>6 7706.6391 1291 1532 1292
cox<>newspapers<>7 7669.3323 1465 2834 1652
optional<>trim<>8 7607.0813 1430 2741 1532
white<>house<>9 7334.4866 1529 2875 2634
story<>filed<>10 7198.9907 1319 2003 1684
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Since Poisson-Stirling measure is computationally quite similar to the Pointwise Mutual
information. We compared it with Pointwise Mutual Information as well. The correlation
between these two measures was 0.7974. Although this value is fairly high, it still
indicates that these two measures are not identical and hence can be used to identify

different sets of Ngrams.
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6 Future Work and Conclusions

In this section we discuss some of the features that can be added to NSP in the near

future.

Program count.pl can be implemented in a more modular fashion, thus reducing the
amount of code duplication. Threads can also be used to speed up the process of
identifying and counting bigrams in large corpora of text. Also, work can be done to

make count.pl more memory efficient.

The program count.pl can also be extended to get counts of Ngrams from the World
Wide Web. It can also be extended to provide support for the Unicode character set. Also,
count.pl can be modified to allow frequency cutoff for frequently occurring tokens. This

can be done to automatically identify and remove stop words.

Some of the existing measures can be extended for trigrams and if possible 4-grams.
Some more measures of association can be implemented. Program statistic.pl can be
modified to allow sorting in ascending order of scores. This might be useful for certain

measures such as the right sided Fisher's Exact test.

To conclude, we summarize some of the accomplishments of this project. We have
redesigned Ngram Statistics Package using object-oriented concepts without any
significant slowdown in performance. As part of this redesign we have grouped the
various measures into families based on their computations. We have also implemented
some new measures such as Poisson-Stirling, Jaccard Coeffcient and two-tailed Fisher's

Exact test.
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We have designed and implemented an optimization to the left and right sided Fisher's
Exact tests. We have also implemented a variation to the Pointwise Mutual Information

measure that reduces the overestimation of low frequency Ngrams by PMI.
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Appendix A

Here is a sample implementation of a measure that computes the sum of all the observed

frequency cells (i.e. nyj, Ny, Ny and ny).

package Text::NSP::Measures::2D::sum;
use Text::NSP::Measures::2D::MI::2D;
use strict;

use Carp;

use warnings;

no warnings 'redefine';

require Exporter;
our (SVERSION, @EXPORT, @ISA);
@ISA = gw(Exporter);

@EXPORT = gw(initializeStatistic calculateStatistic

getErrorCode getErrorMessage getStatisticName);
SVERSION = '0.01';

sub calculateStatistic

{

my %values = @_;

# computes and returns the marginal totals from the frequency

# combination values. returns undef if there is an error in

# the computation or the values are inconsistent.
if(!(Text::NSP::Measures: :2D::computeMarginalTotals (Svalues)) ){

return;
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# computes and returns the observed and marginal values from
# the frequency combination values. returns 0 if there is an
# error in the computation or the values are inconsistent.

if( !(Text::NSP::Measures::2D::computeObservedValues(Svalues)) )

{
return;
}
# Now for the actual calculation of the association measure
my SNewMeasure = 0;
SNewMeasure += Snll;
SNewMeasure += Snl2;
SNewMeasure += Sn2l;
SNewMeasure += Sn22;
return ( SNewMeasure );
}

sub getStatisticName

return "Sum";
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Appendix B

The following is the list of stop words that were removed from the input text.

a
aboard
about
above
across
after
again
against
all

along
alongside
already
also
although
always
am

amid
amidst
among
amongst
an

and
another
anti

any
anybody
anyone
anything
are
around
as
astride
at

aught
away

b
back
bar
barring
be

did

do

doe

does
doing
done
dont
down

dr

during

e

each

ec

ee

eight
eighteen
eighth
either
eleven
else

end
enough
especially
etc

even
ever
every
everybody
everyone
except
excepting
excluding
f
few
fewer
fifteen
fifth
first
five
following

include
included
including
indeed
inside
instead
into

is
it
its
itself
iv

i
ir
just
k
kept
know
I
last
late
later
less

let

like
little

m
made
make
making
many
may
me

not

nothing
notwithstanding
now

ns

nt

fo]

of

off

often

on

once

one

oneself

only

onto

opposite

or

other

others
otherwise
ought

our

ourself
ourselves

out

outside

over

own

p
part
particular
past

pe
pending
per
perhaps
plenty
plus
probably

sixteen
sixth

o)

some
somebody
someone
something
sometimes
somewhat
soon
sooner

sr

such
suchlike
suddenly
sundry

t
take

ten

tenth

than

that

the

thee

their

theirs
them
themselves
then

then

there

they

thine

third
thirteen
this

those

thou
though
three

various
versus

very

Vi

via

Vii

Viii

Viiii
vis-a-vis

0

wa

want
wanted
wants

was

we

well

went

were

what
whatall
whatever
whatsoever
when
where
whereas
whereby
wherewith
wherewithal
which
whichever
whichsoever
while

who
whoever
whole
whom
whomever
whomso
whomsoever
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because
become
becomes
becoming
been
before
behind
being
below
beneath
beside
besides
between
beyond
both

but

by

c

called

can
cannot
cant
certain
circa

cm
concerning
considering
contain
could

d
de
despite

for

four
fourteen
fourth
from

g
get
give
go
going
good
got

h
ha
had
hardly
has
have
he
held
her
here
hers
herself
hes
him
himself
his
hisself
hm
how

i

might
mine
minus
mm
more
most
mostly
mr
mrs
much
must
my
myself
n
naught
near
need
needed
needs
neither
never
new
next
nhs
nine
nineteen
ninth
no
nobody
non
none
nor

puts
q
quite
r
rather
really
recent
regarding
relate
round

s
said

save

saw

say

says
second
see

seem
seems
seen

self
seven
seventeen
seventh
several
shall

she

short
should
since

SiX

thrice
through
throughout
thus
thyself
till

to

too
totally
tother
toward
towards
twain
twelve
twenty
twice
two

u
under
underneath
unless
unlike
until

up
upon
upper
us

use
used
usually
ux

%

whose
whosoever
will

with

within
without
wont
worth
would

X

Yy
ye

year
years

yes

yet

yon
yonder
you
you-all
your
yours
yourself
yourselves
z

\.
\,

\II
\l
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Appendix C

Sample output from dprofpp:

Total Elapsed Time = 9.609147 Seconds
User+System Time = 7.759147 Seconds

Exclusive Times

%Time ExclSec CumulS #Calls sec/call Csec/c Name

194
15.5
12.5
10.1
7.86
5.54
5.16
1.29
0.26
0.00
0.00
0.00
0.00
0.00
0.00

1.510 1.510 1 1.5100 1.5100 main::unformattedPrinting

1.210 4.410 100000 0.0000 0.0000 Text::NSP::Measures::2D::MI::1l::calculateStatistic
0.970 0.970 400000 0.0000 0.0000 Text::NSP::Measures::2D::MI::computePMI
0.790 0.790 100000 0.0000 0.0000 Text::NSP::Measures::2D::computeMarginalTotals
0.610 2.230 100000 0.0000 0.0000 Text::NSP::Measures::2D::MI::getValues

0.430 0.430 100000 0.0000 0.0000 Text::NSP::Measures::2D::computeExpectedValues
0.400 0.400 100000 0.0000 0.0000 Text::NSP::Measures::2D::computeObservedValues
0.100 0.100 100000 0.0000 0.0000 Text::NSP::Measures::getErrorCode

0.020 0.020 4 0.0050 0.0049 main::BEGIN

0.000 0.000 4 0.0000 0.0000 Exporter::Heavy::heavy_export

--0.000 1 - - Config::TIEHASH

--0.000 1 - - Config::import

--0.000 1 - - Getopt::Long::Configure
--0.000 1 - - warnings::BEGIN

--0.000 1 - - Getopt::Long::ConfigDefaults
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Appendix D

The following table shows the N x N Correlation matrix for all the measures implemented

in Ngram Statistics Package.

Log- Poisson- Chi PHI Dice Jaccard left right |two-tailed| Odds

likelihood| TMI PMI Stirling | Squared | T-Score |Coefficient|Coefficient| Coefficient | Fisher's | Fisher's | Fisher's | Ratio
Log-likelihood 1] -0.8872| 0.7941] 0.9968 0.9049| 0.9129] 0.8208] 0.7997 0.8008| 0.4435| -0.7429| -0.7444| 0.8006
T™I -0.8872| 1.0000, -0.8882| -0.8871 -0.8876| -0.8749) -0.2259) -0.8654| -0.8440| -0.3691| -0.6056| -0.6053| -0.8881
PMI 0.7941| -0.8882] 1.0000] 0.7974 0.9725| 0.5830| 0.8795| 0.8189 0.8200] 0.4019| -0.5910] -0.5897| 0.9987|
Poisson-Stirling 0.9968| -0.8871| 0.7974/ 1.0000 0.9063] 0.9068] 0.8208] 0.8128 0.8139] 0.4490| -0.7437| -0.7425| 0.8037|

Pearson's Chi

Squared 0.9049| -0.8876| 0.9725/ 0.9063 1.0000| 0.7276/ 0.9012] 0.8605 0.8613| 0.4503| -0.6730] -0.6723| 0.9743
T-Score 0.9129] -0.8749| 0.5830] 0.9068 0.7276] 1.0000 0.6917| 0.6778 0.6799] 0.2833| -0.6894| -0.6881] 0.5907|
PHI Coefficient 0.8208| -0.2259] 0.8795 0.8208 0.9012] 0.6917 1.0000] 0.8067 0.8117| 0.4489] -0.1891] -0.1887| 0.8812

Dice Coefficient 0.7997| -0.8654| 0.8189] 0.8128| 0.8605] 0.6778 0.8067 1.0000 0.9998| 0.2866| -0.5734] -0.5721] 0.8103
Jaccard Coefficient 0.8008| -0.8440| 0.8200] 0.8139 0.8613| 0.6799 0.8117 0.9998 1.0000] 0.2927| -0.5612| -0.5599] 0.8115

left Fisher's 0.4435| -0.3691| 0.4019 0.4490 0.4503] 0.2833 0.4489 0.2866 0.2927| 1.0000] -1.5609] -1.5590| 0.4030
right Fisher's -0.7429| -0.6056| -0.5910, -0.7437 -0.6730| -0.6894| -0.1891] -0.5734 -0.5612] -1.5609] 1.0000] 0.9989| -0.5941
two-tailed Fisher's -0.7444| -0.6053| -0.5897| -0.7425 -0.6723] -0.6881] -0.1887] -0.5721 -0.5599| -1.5590| 0.9989] 1.0000] -0.5928
Odds Ratio 0.8006| -0.8881| 0.9987| 0.8037| 0.9743| 0.5907 0.8812 0.8103 0.8115] 0.4030| -0.5941| -0.5928/ 1.0000
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