
Blue Gene/L
advanced
diagnostics
environment

M. E. Giampapa
R. Bellofatto

M. A. Blumrich
D. Chen

M. B. Dombrowa
A. Gara

R. A. Haring
P. Heidelberger

D. Hoenicke
G. V. Kopcsay

B. J. Nathanson
B. D. Steinmacher-Burow

M. Ohmacht
V. Salapura
P. Vranas

This paper describes the Blue Genet/L advanced diagnostics
environment (ADE) used throughout all aspects of the
Blue Gene/L project, including design, logic verification, bring-
up, diagnostics, and manufacturing test. The Blue Gene/L ADE
consists of a lightweight multithreaded coherence-managed kernel,
runtime libraries, device drivers, system programming interfaces,
compilers, and host-based development tools. It provides complete
and flexible access to all features of the Blue Gene/L hardware.
Prior to the existence of hardware, ADE was used on Very high-
speed integrated circuit Hardware Description Language (VHDL)
models, not only for logic verification, but also for performance
measurements, code-path analysis, and evaluation of architectural
tradeoffs. During early hardware bring-up, the ability to run in a
cycle-reproducible manner on both hardware and VHDL proved
invaluable in fault isolation and analysis. However, ADE is also
capable of supporting high-performance applications and parallel
test cases, thereby permitting us to stress the hardware to the limits
of its capabilities. This paper also provides insights into system-
level and device-level programming of Blue Gene/L to assist
developers of high-performance applications to more fully exploit
the performance of the machine.

Introduction

The Blue Gene*/L (BG/L) advanced diagnostics

environment (ADE) has been used during all aspects of

the BG/L project, including design, logic verification,

bring-up, manufacturing test, and system diagnostics

[1]. ADE provides a scalable productive programming

environment that ranges from a single-node simulation at

a few cycles per second up to high-performance parallel

partitions comprising tens of thousands of nodes. The

availability of ADE in the early design phases enabled

feedback into the architecture in time to evaluate design

tradeoffs and made it possible to perform code-path

analysis and to verify device programming interfaces.

Architectural studies using ADE include single-node

memory system and computational kernel performance

measurements. In the scaling phase of the BG/L project,

ADE has been used for studies of network performance,

scalability, and machine reliability. Test cases built atop

ADE have been organized into the regression suite used

in verification [2] and the manufacturing test and

diagnostics suites used in production.

ADE host-based software consists of compilers,

development tools, configuration and personalization

tools, and a partition-management console. ADE node

software provides complete and flexible access to all

features of the BG/L compute (BLC) chip hardware,

shown in Figure 1; it consists of a lightweight

multithreaded coherence-managed kernel, runtime

libraries, device drivers, and system programming

interfaces. The design and modularity of the ADE kernel

closely follow the BLC node architecture. The BLC chip

contains two processor complexes, each consisting of

an embedded 32-bit IBM PowerPC* 440 (PPC440) [3]

processor and a custom double floating-point unit

(FPU) [4] built from two 64-bit Book E [5] FPUs.

Architecturally, these two processor complexes are

identical, with full access to all on-chip facilities managed

by the ADE kernel and system programming interfaces.

�Copyright 2005 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions,
of this paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any

other portion of this paper must be obtained from the Editor.

IBM J. RES. & DEV. VOL. 49 NO. 2/3 MARCH/MAY 2005 M. E. GIAMPAPA ET AL.

319

0018-8646/05/$5.00 ª 2005 IBM

The BLC memory system interface contains three levels

of on-chip cache.

Each core contains separate 32-KB level 1 (L1)

instruction and data caches. Hardware does not maintain

coherence at L1. Although this burdens software with

coherence management where necessary, it provides an

overall memory system performance gain by eliminating

hardware snoop overheads and bus coherence protocol

traffic between the processors.

The L2 and L3 caches are weakly ordered coherent. The

L2 cache for each processor complex provides sequential

prefetching over multiple datastreams and supports

coherence via snooping between the L2 caches. L3 uses 4

MB of embedded dynamic random access memory

(DRAM), which is partitionable between cache and

directly addressed memory. L3 interfaces with a double-

data-rate (DDR) controller that supports 256MB to 2 GB

of external DDR. A 16-KB static random access memory

(SRAM) is used for booting, communication with the host

service processor, and shared high-speed storage.

Communication services provided by the ADE kernel

and system programming interfaces support the five

BG/L networks. The BLC chip contains three high-

performance networks: a three-dimensional torus

network [6], a collective network,1 and a global interrupt

network. There are two external network interfaces: a

Gigabit Ethernet used on input/output (I/O) nodes and a

JTAG network (IEEE Standard 1149.1) that interfaces all

nodes with the external control and monitoring system.

Closely associated with the JTAG network, the BLC chip

contains a test interface unit used by the ADE kernel to

control unit resets, clock enables, and low-level hardware

debug, and to discover configuration information set up

by the service processor control system, described in [7].

Not shown in Figure 1 are three devices that span all

units and are critical to kernel and diagnostics software:

� BG/L interrupt controller (BIC): The BIC gathers

and prioritizes interrupt signals from all devices for

presentation to the kernel as low-priority standard

interrupts, high-priority critical interrupts, or urgent

machine checks.
� Universal performance counter (UPC): UPCs gather

performance counters and error counters from the

other units.
� Device control register (DCR) bus: The DCR bus

provides a direct interface from the processors to

devices for configuration, control, and status

information. Via the DCR bus, processors and the

JTAG network are provided back-door access

into the internal state of most units. This access

proved invaluable to the development, debug, and

verification of BLC. In all, there are approximately

750 DCRs on the BLC.

The following sections begin with a description of the

ADE kernel and bootstrapper, and continue by detailing

the low-level system programming interfaces (SPIs)

provided for diagnostics and closely coded BG/L

applications. The host-based development and support

components of ADE are then discussed. Throughout

these sections, we highlight the architectural features and

programming concepts that all too often can be hidden

under high-level, general-purpose (sometimes restrictive)

application interfaces.

ADE bootstrapper and kernel
The BLC node software provided by ADE consists of

a bootstrapper, kernel, system programming interface

Figure 1

Blue Gene/L compute (BLC) chip architecture. Yellow shading
indicates off-the-shelf cores. ©2002 IEEE. Reprinted with
permission from G. Almasi et al., “Cellular Supercomputing with
System-on-a-Chip,” Digest of Technical Papers, 2002 IEEE
International Solid-State Circuits Conference.

Processor local bus (4:1)
2.7 GB/s

Ethernet
Gbit

JTAG
access

144-bit-
wide
DDR

256/512 MB

IEEE
1149.1
(JTAG)

Gigabit
Ethernet

440 CPU
I/O

processor

M
ul

tip
or

te
d

sh
ar

ed
 S

R
A

M
 b

uf
fe

r

Torus
DDR

control
with ECC

Shared
L3

directory
for

embedded
DRAM

Includes
error

correction
control
(ECC)

4-MB
embedded

DRAM

L3 cache
or

memory

6 out
and 6 in,
each at

1.4 Gb/s
link

256
11 GB/s

256
11 GB/s

10
24

�
 1

44
 E

C
C

22
 G

B
/s

256

12
8

12
8

32K/32K L1

32K/32K L1

Double-
hummer

FPU

Double-
hummer

FPU

256

Snoop

Collective

3 out
and 3 in,
each at

2.8 Gb/s
link

Global
interrupt/
lockbox

4 global
barriers

or
interrupts

128

440 central
processing
unit (CPU)

L
2

pr
ef

et
ch

 b
uf

fe
r

L
2

pr
ef

et
ch

 b
uf

fe
r

5.
5

G
B

/s

5.5 GB/s

1D. Hoenicke, M. A. Blumrich, D. Chen, A. Gara, M. E. Giampapa, P. Heidelberger,
L.-K. Liu, M. Lu, V. Srinivasan, B. D. Steinmacher-Burow, T. Takken, R. B.
Tremaine, A. R. Umamaheshwaran, P. Vranas, and T. J. C. Ward, ‘‘Blue Gene/L
Global Collective and Barrier Networks,’’ private communication.

M. E. GIAMPAPA ET AL. IBM J. RES. & DEV. VOL. 49 NO. 2/3 MARCH/MAY 2005

320

libraries, and language support runtime libraries for C,

Cþþ, and Fortran. During early BLC logic development,

ADE was flexibly used more as a toolkit than as a

traditional operating system. From this toolkit, test-case

designers constructed environments through compiletime

and/or runtime configuration that best suited their needs.

This flexibility was required for three reasons. First,

different BLC modules were developed and integrated

at different times. In fact, the very first BLC simulation

environment consisted of a single PPC440 core model,

without FPU, running against a simple SRAM memory

model. Second, and perhaps most significantly,

nonworking or unstable modules could be left in a

quiesced state or, in most cases, held in reset. This

allowed, for example, cycle-sim verification, described

in [2], to proceed with embedded DRAM and L3 cache

stubbed out of the BLC simulation model while awaiting

a working cycle-sim embedded DRAM model. When

hardware first arrived, the converse was true; BLC bring-

up testing could proceed by running the kernel and test

cases from embedded DRAM scratch space while we

were debugging DDR controller initialization. Third,

because event-sim logic simulations run O(1) processor

cycles per second of wall-clock time, productivity is

improved by allowing test cases to focus on particular

modules without having to wait through the full kernel

initialization and configuration of other modules for each

test run.

The flexibility this provided to BLC verification proved

invaluable during the first few days of initial hardware

bring-up. While the host-based hardware bring-up host

console, described below, and service processor support

interfaces were under development and debug, using

ADE we were able to boot the hardware, make initial

contact with all devices, and exercise the network

interfaces, with the help of the IBM RiscWatch JTAG

debugger. The first instructions run on the BLC

application-specific integrated circuit (ASIC) chip were

an ADE bootstrapper extension called picoboot that

loaded exclusively into the uppermost 4 KB of SRAM,

initialized both cores, verified SRAM functionality, and

was used to debug the debugger itself. By the end of the

third day of bring-up, the ADE kernel was pieced back

together module-by-module as each device was shown to

be functional, and a single-node fast Fourier transform

(FFT) computational kernel was run from embedded

DRAM scratch that produced the correct answer.

The majority of ADE test cases and applications fall

into two categories: bootstrapper extensions or kernel

extensions. Bootstrapper extensions are SRAM-based

tests that are linked directly into the bootstrapper and

executed following bootstrapper initialization. Examples

of bootstrapper extensions include diagnostics for DDR,

embedded DRAM, and L2 and L3 caches, all of which

can perform content-destructive testing of 100% of

memory. Other bootstrapper extensions have been

created to act as monitors for DDR-based nonkernel

diagnostics, including a program that generates random

sequences of instructions and memory reference patterns

and executes those instructions once in single-step mode

and again in superscalar mode. Differences in results

could indicate memory system or processor problems.

The bootstrapper contains a very simple dual-threaded

kernel capable of detecting and reporting any unexpected

processor or device interrupts during BLC initialization.

Because of the 16-KB size of SRAM, the bootstrapper

cannot properly handle or recover from such interrupts;

however, detection and reporting go a long way toward

assisting the service processor or control system to

diagnose any fatal early initialization problems.

Kernel extensions are linked directly into the kernel

and are launched following kernel initialization by calling

a defined entry point for each core in a separate privileged

kernel thread within the single process (virtual address

space) per node. By convention in kernel extensions, core

0, labeled the compute processor, is entered via a thread

launch to the function _CP_main(); and core 1, labeled

the I/O processor, is entered via a thread launch to

_IOP_main(). In contrast to typical pthread_create()

semantics, the arguments to each of these functions are

identical to the familiar C language main() program

entry point, including command-line arguments and

environment variables. Kernel extensions have been

developed using C, Cþþ, and Fortran.

In ADE, we term this mode of operation symmetric

mode. In symmetric mode, the ADE kernel provides a

single-process multithreaded programming model that

closely matches the BLC node architecture, in which the

threads, like the cores, are full peers with equal access

to all BLC hardware devices and their programming

interfaces. This mode of operation, employed by the vast

majority of diagnostics and verification codes, allows the

creation of simultaneous coordinated attacks from both

cores that more fully stress the hardware. Hardware

exercisers, SPI collective communication routines,

and applications use this mode to improve network

performance by dividing injection and reception work

between the cores. Two hardware facilities are provided

to assist with interprocessor communication and control.

Core-to-core interrupts provided by the BIC enable

processors to deliver 32 standard and 32 critical

interrupts, and even a machine check interrupt to their

partner. ADE reserves five standard and two critical core-

to-core interrupts for coordination, control, and error

handling, and makes the rest available for test-case

and application use via installable interrupt or signal

handlers. Atomic operations between the processors are

supported by the lockbox, which provides 256 low-latency

IBM J. RES. & DEV. VOL. 49 NO. 2/3 MARCH/MAY 2005 M. E. GIAMPAPA ET AL.

321

test-and-set semaphores and interprocessor barrier

operations.

The ADE kernel, device drivers, SPI libraries, and

language-support runtime libraries were designed and

implemented to support multithreading with noncoherent

L1 caches. Unlike normal symmetric multiprocessor

(SMP) kernels, in which L1 cache management is

predominantly used to gain a slight performance

advantage, the coherence management in ADE is

necessary for correctness. Like optimized SMP kernels,

the ADE kernel organizes shared data structures on

cache-line boundaries and avoids false sharing. For

performance, larger data structures are aligned on L3

cache-line boundaries, reducing the total number of L3

cache operations and allowing a single L2 prefetch to

access four L1 cache lines. Atomic access to data is

guarded via the lockbox in conjunction with L1 cache

invalidation before access and L1 flush after access.

Critical code paths and device accesses are also

semaphored via the lockbox. Symmetric mode

applications and test cases use similar straightforward

techniques. Software coherence management is not

difficult; to date, the only bug encountered was a

forgotten invalidate of a cache line that was dirtied when

the Ethernet driver set the packet header checksum field

to zero as part of validating the checksum. The

asynchronous write-back of this dirty line overwrote the

header of a later packet that reused the packet buffer via

direct memory access (DMA).

ADE provides a choice of runtime libraries that

support symmetric mode: SimLib and NewLib [8].

SimLib, scratch-written for ADE and primarily targeted

for use in the simulation environments, requires zero

start-up overhead and provides highly optimized small

footprint implementations of needed language support

functions. NewLib, used by only a few applications

and hardware exercisers that require functionality of a

more complete runtime, is particularly well suited to

noncoherent multithreading because all static data

has been organized into per-thread data structures.

The ADE kernel also provides a dual-process per-node

programming model called split mode. In split mode, the

kernel manages two processes, with each process assigned

to one of the BLC cores. Split mode is entered by a

kernel-managed fork() of the application data segment.

To save physical memory and reduce translation

lookaside buffer (TLB) pressure, a single kernel image is

used, and through linkage conventions, large read-only

application-constant areas are linked into the single

code image shared by both processes. Because of the

underlying symmetric mode support, split mode is a

simple extension to more easily support the use of both

cores for ‘‘dusty deck’’ compute-bound applications.

Configuration

ADE provides four default sets of compiletime build

options and allows test-case and application designers to

tailor any of these for their specific needs. The first three

of these options, with certain restrictions, can flexibly

move back and forth between the hardware and

simulation environments. The first of these build options

specifically targets the logic simulation environments. In

this configuration, the kernel support for host console via

the JTAG network is disabled. Simulation-only devices,

such as the virtual universal asynchronous receiver

transmitter (UART) serial output device and external

network loop-back provided by the Very high-speed

integrated circuit Hardware Description Language

(VHDL) testbench, are enabled. Required workarounds

for the differences between simulation and hardware

are enabled. In addition, the ADE chip and kernel

initialization is streamlined to save simulation time by

taking advantage of the known BLC ASIC state at the

start of simulation runs. For simulation runs, the

bootstrapper and kernel have been deposited into

memory, and the cache state is clean before reset is

released.

The second ADE build option is used by test cases and

some applications that require complete control over the

BLC memory system. In this option, the default memory

allocation code is disabled so that test cases can use

the virtual memory management SPI of the kernel,

described below, to allocate and configure memory

in any or all of the possible modes.

High-level test cases, hardware exercisers, and

applications predominantly use the third build option.

In this option, the ADE kernel is responsible for the

initialization, configuration, and monitoring of all BLC

devices that have been enabled on the basis of the

personalization. Memory management is provided

through typical runtime library interfaces, subject

to the configurations or restrictions imposed by the

personalization described below. This build option also

allows repeated runs of the same executable with various

combinations of memory system configuration options.

The fourth build option for ADE completely

transforms ADE into the BG/L ADE network interface

emulator (BLNIE). With this option, the entire kernel

and device interface for the hardware is replaced with

an emulation layer that runs natively on IBM AIX*

or Linux** host machines. There are two completely

different uses for BLNIE builds of the ADE code base.

First, a library has been provided that runs on the host

and reaches into the BLC nodes via the JTAG interface to

perform DCR accesses, processor state dumps, memory

system peeks or pokes, and even back-door device

accesses.

M. E. GIAMPAPA ET AL. IBM J. RES. & DEV. VOL. 49 NO. 2/3 MARCH/MAY 2005

322

Specially written routines used much of the device

driver code and register definitions from the host to

debug the chip. This environment was invaluable in

performing root-cause analysis of the few subtle memory

system problems and even a processor erratum. The

second use of the BLNIE build allows multinode,

multicore applications and high-level test cases to be

developed and executed on the host. This was used

primarily after the logic design was completed, while we

were waiting for hardware to arrive. In this environment,

the system programming interfaces for the torus,

collective, and global interrupt networks were

implemented using shared memory for communication.

Each BLC node was implemented as a host process, with

a thread emulating each core of the BLC. Up to 16

emulated nodes, and depending on application workload

and SMP host system performance, BLNIE performance

was equal to BLC node performance. The value of

BLNIE was proved when a simple recompile of many

parallel test cases, including computational kernels from

the Blue Matter [9] science team, ran on BG/L with no

application-level code changes. The largest difference was

that BLNIE emulated cores were coherent at L1, unlike

BLC cores.

Personalization

Personalization of ADE is the last step before test

cases and applications are loaded into the simulation

environments or onto hardware partitions. Through

personalization, ADE discovers the configuration of the

parallel partition and how the test-case designer wants the

various devices and memory system configured, and

obtains application-level information, such as command-

line arguments and environment variables. In both the

bootstrapper and kernel, a memory area is reserved to

hold the personalization information. These memory

areas are written by a host program, called svc_host,

that is included in ADE. Application designers supply

arguments and flags to svc_host via shell scripts with

each test case. Once personalization has been applied,

svc_host computes and applies cyclic redundancy check

(CRC) and checksum values of the bootstrapper, kernel,

and personalization to ensure integrity of the load.

The bootstrapper SRAM personalization contains

information needed for early BLC initialization by both

the bootstrapper and kernel, including the following:

� Number and type of DDR memory modules installed.
� Field specifying DDR bit-steering parameters

(currently unused).
� Enable/disable/configuration for L1, L2, L3, and

scratch in all combinations.
� Enable/disable/configuration for torus, collective,

global interrupts, and Ethernet networks.

� Whether this node is an I/O node or a compute

node.
� Torus x, y, z dimensions and, for each dimension,

whether torus or mesh.
� Node coordinates within the torus, or I/O node

rank.
� Ethernet media access control (MAC) and Internet

Protocol (IP) addresses.
� UPC initial programming configuration.
� Initial tracing masks to control error reporting and

verbosity.
� Power control for idle units: torus on I/O nodes,

Ethernet on compute nodes.
� Personality CRC and bootstrapper SRAM CRC.

The kernel personalization area contains application-

specific information that is constant for all nodes in the

partition, including the following:

� Command-line arguments.
� Environment variables.
� Miscellaneous SPI and application state variables.
� Kernel and test-case checksum.

Operation

From power-on reset, the service processor manages the

start-up and configuration sequence of BLC via the

JTAG network. In simulation, this is accomplished via

Tcl/Tk scripts that deposit both the bootstrapper and

kernel into memory. On hardware, the bootstrapper is

written into the SRAM of each node and launched. All

nodes receive the bootstrapper, typically done via JTAG

broadcast. Unique personalization is then loaded into

each node. Following processor and memory system

initialization, the bootstrapper collaborates with the

service processor to load the kernel through the JTAG

mailbox messages. The bootstrapper supports three

methods of kernel load: JTAG single-node load, JTAG

broadcast, or single-node load followed by a broadcast

via the internal high-speed network. Once the kernel load

has been completed and verified, the bootstrapper flushes

all cache state and transfers control to the kernel by

simultaneously branching to the entry point of the

kernel on each core. The kernel begins execution by

reprogramming the core interrupt vectors to point to

itself. During this short but vulnerable transfer of control,

the simple interrupt handlers of the bootstrapper remain

in effect to catch and report any severe node problems,

such as those that might be encountered during initial

manufacturing tests.

Following initial setup, the kernel, on the basis of

compiletime configuration and personalization, enables

and configures required devices, initializes the runtime

IBM J. RES. & DEV. VOL. 49 NO. 2/3 MARCH/MAY 2005 M. E. GIAMPAPA ET AL.

323

libraries and system programming interface libraries,

creates kernel threads on each core, and invokes any Cþþ
constructors. Finally, the kernel synchronizes processor

cycle counters across the partition and then launches the

application entry points simultaneously on all nodes.

At that point, the ADE kernel becomes passive,

awaiting device interrupts, reliability, availability, and

serviceability (RAS) and error events, and kernel calls.

A feature of ADE, called ping-pong reset, ensures that

the start-up sequence is deterministic, repeatable to the

cycle, and recreatable in simulation. The bootstrapper,

kernel, host console, and design of certain test cases all

play a role in supporting this function. Ping-pong reset is

initiated by invoking a kernel function on both cores that

starts by flushing all levels of cache out to DDR and

cleaning nondeterministic state from the cores and setting

the soft-reset ‘‘cookie’’ in SRAM. This action has the side

effect of causing the hardware state to match the initial

condition used in simulation. Following completion of

this step, one core toggles reset for the other core, then

enters a spin loop. The reset core vectors off to the SRAM

reset vector, sees the soft-reset cookie, and toggles reset

for the other core. During this time, the host console

suspends mailbox polling to avoid any SRAM

interference that could introduce asynchrony in

arbitration for SRAM access between the processors

and the JTAG interface. In this way, the second and

subsequent trips through ping-pong reset are fully

repeatable to the cycle. Test cases that take advantage

of this feature typically use iterative or random methods

to explore a search space, saving the random seed used

on each pass and invoking ping-pong reset between

passes. Passes that showed unexpected behavior on the

hardware could then be precisely rerun on other nodes

to differentiate manufacturing defects in specific nodes, or

rerun in simulation to catch logic errors. In several cases,

a difference of even a single cycle could mask a problem.

This feature of ADE was put to good use in performing

root-cause analysis and finding and verifying

workarounds of unexpected BLC behavior, and also

recreation of processor errata. A minimal failing scenario

could be found at the speed of hardware and then easily

rerun in simulation for detailed analysis.

ADE system programming interfaces
The ADE system programming interfaces have been

designed with several competing, often orthogonal, goals

in mind. First, these interfaces had to be low-level and

complete so that all aspects of the hardware could be

specifically exercised. Second, they had to be sufficiently

high-level to support multinode parallel test cases,

benchmarks, and applications that stress the hardware to

the limits of its capabilities. Third, they had to be general

enough that combined test cases that stress multiple

modules simultaneously could easily be developed and

debugged. Fourth, to the extent possible, they had to

support static compiletime setup and initialization to

save simulation cycles, allowing the large regression

suite to complete in reasonable time. Finally, through

configuration and/or personalization, they had to support

isolation of devices, so that, for example, during

manufacturing test, faults in certain devices would not

prevent us from testing other devices, providing more

complete feedback to the quality control process. In the

following paragraphs, each of the system programming

interfaces is briefly introduced, and unusual features and

functionality are highlighted. Details of specific examples

using these SPI interfaces during verification, bring-up,

and diagnostics have been described in [2, 6].

Most of the software in each of these SPI interfaces

is devoted to RAS support and involves detailed error

reporting and diagnosis, and, where possible, recovery.

For each of the interfaces described here, the ADE kernel

implements a device driver, consisting of initialization

and configuration routines, and interrupt handlers to field

normal or error condition device interrupts. RAS support

makes up more than half of the entire kernel and runtime

library footprint. ADE has been designed to remain

responsive through nearly all likely hardware errors and

configures each core to monitor the other core for

machine checks or other fatal events.

Memory system management

The memory system management SPI enables two

options for test cases and diagnostics: the choice of

having complete control over the BLC memory system or

leaving control to the kernel virtual memory manager

(VMM). The choice can be made on the basis of the

current configuration and personalization, through

runtime library interfaces such as malloc() and

free(), and SRAM allocation. The PPC440 processors

implement a 36-bit physical address space. In BLC, the

lower 32 bits of this address space are used to address

memory and devices via memory-mapped I/O (MMIO).

The upper four bits of the 36-bit address space are used as

flags to control memory system configuration, including

L2 inhibit, L3 inhibit, and bypass of the normal L2-to-

PLB (processor local bus) interface, instead directing

memory traffic via the on-chip peripheral bus (OPB). The

PLB interface provides DMA support for the Gigabit

Ethernet controller. The PPC440 address bus provides

additional storage control attributes, expressed from user

attributes in the processor TLBs onto the memory bus. In

BLC, one of the user attributes is used to configure L2

prefetching for optimistic stream detection, or the default

automatic stream detection, which requires confirmation

to identify a stream. Another attribute is used as a flag to

inhibit L3 prefetching from DDR.

M. E. GIAMPAPA ET AL. IBM J. RES. & DEV. VOL. 49 NO. 2/3 MARCH/MAY 2005

324

The physical address space layout is pictured in

Figure 2. The lower 2 GB of the address space maps

DDR. Configurations of 256 MB, 512 MB, 1 GB,

or 2 GB are supported. On BLC, one can partition

the embedded DRAM between L3 cache and directly

addressed memory, called scratch space, in multiples of

512 KB up to the full 4 MB, allowing software to create

a high-speed shared scratch area that can contain

directly addressed data or code. The BLC memory map

uses two MMIO areas that allow flexible mapping into

user space of the high-speed network interfaces and

the lockbox. An additional MMIO area is used for the

Ethernet. The 16-KB SRAM is located at the upper end

of the 32-bit address space, which contains the PPC440

reset vector entry point. BLC boot is accomplished

by writing initialization software directly into SRAM

via the JTAG network and releasing reset from the

processors. The blind device is an area in the physical

address space where data written by the processors is

immediately discarded by the memory system, and data

read immediately returns garbage to the processors. This

unusual device was designed for two reasons. The

primary use of the blind device is as a cache-flush-assist

device that speeds coherence management of the L1

caches of the processors. Software can use this area to

quickly displace L1 cache contents by taking advantage

of the L1 round-robin cache-line replacement policy.

An upper bound of 1,024 cache-line touch or zero

operations, one per cache line, can flush a much larger or

irregular area of memory. Memory system diagnostic

tests use this device as physical memory backing-store

for locked L1 cache lines holding data and stack space,

expanding their physical memory footprint beyond the

16-KB SRAM without perturbing the state of the

memory system.

The low-level interfaces of the memory management

SPI provide memory system diagnostics with a

convenient error-checked way to perform their own TLB

management with complete control over the L1, L2, and

L3 caches, prefetching at L2 and L3, and enablement and

size of scratch space. In all, this SPI provides control

over 16 independently configurable memory system

configuration options in all supported combinations and

provides cache flush, invalidate, and reconfiguration

functions for all levels of cache. Most of these options can

be selected through kernel personalization, allowing an

unmodified test case to execute under widely varying

conditions. Randomly based test cases often use their

seed to combine these options in different ways for better

memory system coverage.

Lockbox

The ADE lockbox SPI provides spin-lock, try-lock, test-

lock, force-lock, and intranode barrier functionality,

available as low-latency inline functions or procedure

calls. By using the VMM and the lockbox configuration

DCR, locks can be assigned to the kernel, to specific

cores, or to the application. The kernel uses locks

to create critical code sections and, in coherence

management, to protect data structures. The kernel also

uses the lockbox to hold low-latency state variables to

indicate that certain initializations have been completed.

For example, in the bootstrapper and kernel start-up

sequence, a try-lock operation is used to pick a core to

perform memory system initializations, whether one or

both cores have been released from reset. The second time

through the initialization sequence, as would be the case

during a host-initiated soft reset or the ping-pong reset

operation discussed above, neither core wins the

competition, thereby preserving the memory system

state on reboot. Another interesting use of the lockbox,

provided as a library interface, is for low-overhead, low-

latency management of circular producer–consumer

queues between the cores, in which a contiguous array of

locks, one per queue slot, is used in place of the traditional

memory-based head and tail pointers. However, the

queue data must be coherence-managed, avoiding the

latency to bounce the queue metadata off L3.

Torus SPI

The ADE torus SPI provides a packet-level interface

based on the concept of active packets, whereby each

arriving packet carries with it the address of a reception

function, called an actor, that is triggered by packet

arrival at the destination node. The SPI provides

Figure 2

Blue Gene/L compute chip physical memory map.

0x00000000

0xFFFFFFFF

0xFFFFC000
SRAM 16 KB

DDR DRAM
256 MB to 2 GB

0x80000000
Embedded DRAM scratch

(optional)

Blind device

MMIO: lockbox

MMIO: PLB, Ethernet

0xC0000000

0xD0000000

0xE0000000

0xB0000000
MMIO: torus, collective,
global interrupts, UPC

IBM J. RES. & DEV. VOL. 49 NO. 2/3 MARCH/MAY 2005 M. E. GIAMPAPA ET AL.

325

two forms of active packets: buffered and unbuffered.

Buffered packets are removed from the torus reception

FIFOs (queues in which access takes place according to

the first-in first-out rule) and placed in a reserved memory

location before the actor is called with the address of that

buffer. Buffered packets are used when the application

requires random or unaligned access to the packet

payload, as might be the case with a protocol packet.

Because the reserved packet buffers are reused on a per-

FIFO basis, buffered packets are most often received into

and accessed from the processor L1 cache. Buffered

packets are also used when a test case simply checks and

then discards the packet contents. Unbuffered packets

call the actor with the address of the reception FIFO

containing the packet payload, providing zero copy

reception, including the ability to receive payloads

directly into processor registers. In addition to the

location of the data, buffered and unbuffered actors

are called with two parameters contained in the packet

software header: a 32-bit untyped argument and an

additional 10-bit untyped argument. As an example,

a put actor might use the first argument as a destination

address and the second argument as the number of bytes

of payload to receive. An additional form of unbuffered

active packet provides an extended software header that

can have different meanings depending on the actor

invoked. This extended header may, for example, contain

additional control information required by SPI-supplied

torus-class routing actors that must remove and reinject

packets at corner turns to avoid network deadlocks for

plane filling or broadcasts on the torus.

The torus SPI provides a full set of header creation

and manipulation routines for hardware and software

headers. Depending on the options desired, torus

header creation could require tens of cycles to well over

100 processor cycles, for example when calculating

hint bits to apply to the packet based on the relative

coordinates of the destination node. The SPI allows

headers to be created during the setup phase of the

application or created on the fly based on templates.

To speed simulation, headers or complete packet

images can be created at compiletime.

The SPI provides blocking and nonblocking packet

send interfaces that choose the injection FIFO on the

basis of space available and packet destination and a

lower-level injection interface where the test case or

application selects the injection FIFO. Similarly, the

reception interface supports blocking or nonblocking

polling, with round-robin fairness among the reception

FIFOs. Actor functions are launched via the polling

functions in the context of the thread performing

the polling. Library routines built up from the SPI,

described in [6], support point-to-point messaging, row

multicast, and plane- and subcube-filling communication

algorithms.

Collective network SPI

In many respects, the collective network SPI is simpler

than the torus SPI. The collective network supports fixed-

size packets of 256 bytes and always delivers packets in

order. The collective network requires a simple hardware

control header that selects the class route to use, whether

the packet is point-to-point or collective and interrupting

or noninterrupting. A software header is optional and

generally used only on point-to-point packets.

The collective network SPI implements blocking and

nonblocking send and receive routines and lower-level

raw injection and reception routines. Built atop this base,

the SPI implements collective broadcast and reduce

function. Because of the multithreaded ADE

programming model, peak collective network

performance can be more easily achieved in complex

collective operations by dividing the workload between

the two cores, using one processor to handle the injection

side while the other processor handles the reception side.

Capture-unit SPI

The capture-unit SPI is implemented both in the kernel

and in the bootstrapper. For multiple midplane

partitions, the bootstrapper enables the capture units

to send training patterns during early BLC chip

initialization so that the BG/L link (BLL) chips that

interconnect the multiple midplanes can be configured

and trained by the host console. On the basis of JTAG

mailbox messages from the host console, the bootstrapper

can complete and error-check the training sequence in

preparation for collective network broadcast of the

kernel. Alternatively, the kernel device driver can

complete the training sequence.

The capture-unit SPI also contains library calls to

enable or disable automatic error injection in the capture

units. This function is used by stressful diagnostics to

verify recovery hardware in the presence of more frequent

errors than would normally be encountered.

Global interrupt SPI

The global interrupt SPI supports the creation and

management of partition-wide barriers and notifications

or alerts. Early in its start-up, the kernel uses the global

interrupt SPI for coordination of capture-unit training

and global clock synchronization. By default, two

barriers are created: one that includes compute and I/O

nodes and another that includes only compute nodes.

Notifications are configured to deliver partition-wide

interrupts that signal error conditions, or state change,

with optional user-installable interrupt or signal handlers.

M. E. GIAMPAPA ET AL. IBM J. RES. & DEV. VOL. 49 NO. 2/3 MARCH/MAY 2005

326

Ethernet SPI

The ADE kernel Ethernet driver supports industry-

standard protocols including User Datagram Protocol

(UDP), Address Resolution Protocol (ARP), and a subset

of Internet Control Message Protocol (ICMP), including

ping. For normal packet transmission or reception, the

Ethernet programming interface provides a choice of

interrupt mode or polling mode, independently for the

send side and the receive side. For Ethernet device error

interrupts, the Ethernet driver provides handlers that

attempt recovery for nonfatal errors or report any fatal

errors, such as an unplugged Ethernet cable, as RAS

events to the host console. If interrupts are desired, they

can be directed, or funneled, to either core to be handled

by installable callback routines that operate much like

signal handlers. For diagnostics use, the Ethernet driver

provides a choice of external PHY (physical layer of the

Ethernet) loopback on I/O nodes or internal Ethernet

media access controller (EMAC) loopback on all nodes.

This has allowed greater coverage in test cases by

enabling Ethernet traffic on compute nodes during

memory system stress tests. The Ethernet SPI also

provides an interface to power down the entire Ethernet

subsystem of the BLC ASIC on compute nodes.

Universal performance counters SPI

The UPC provides performance and error counters for

most BLC devices and, from a choice of hundreds, allows

up to 48 counters to be active at a time. The SPI provides

the ability to enable and disable counters, program the

counters by event name, and report and clear the count; it

also provides field interrupts based on count thresholds.

The SPI sets up a default UPC configuration that enables

all UPC error counters to generate RAS events that are

captured and reported to the service processor. For

speeding simulation runs, or for multiple runs of the

same test-case binary using different sets of counters,

programming of the UPC can be done on the host using

the ADE svc_host utility and is provided to the kernel

via the personalization at load time as a prechecked and

preconfigured list of DCR values to be programmed into

the UPC.

Trace, logging, and debug

The tracing and logging function in the ADE kernel is

fully controllable at compiletime or runtime. If this

support is enabled at compiletime, each trace point or

trace category is controlled by an array of bit masks

that can be set by personalization at loadtime or set

at runtime. This provides the ability to completely

silence kernel tracing and logging, which proved useful

when moving between the simulation and hardware

environments, since these use different external interfaces

to gather this information. Typically, a kernel I/O module

must be recompiled when switching between these

environments, but by avoiding this difference, the same

binary code could run in both places, allowing perfect

reproducibility of a particular BLC issue that could

happen only during a single-cycle window. For extremely

noninvasive tracing, ADE provides an interface to three

of the Special Purposed Registers General (SPRG) of the

PPC440 that can be accessed in a single instruction to

record status or history information.

ADE supports two forms of code profiling—periodic

and histogram—that enable analysis of application

performance by identifying code and algorithmic hot

spots. Periodic profiling captures the code instruction

pointer at regular and repeated intervals, ranging from

a minimum of 2 ls to a maximum of several seconds.

Histogram profiling allows the user to select a code range

and granularity of interest and count the number of

sample periods during which that code granule was

executing.

In addition to RiscWatch debugger support discussed

above, the ADE kernel provides a full traceback of the

call history upon any application fault or addressing

error. Code and data debug support uses the PPC440

built-in debug facilities that allow hardware-managed

breakpoints to be enabled for up to two specific code

addresses, or inclusive or exclusive code ranges. Data

watch-points are supported in a similar fashion.

Compilers and development tools
ADE provides a cross-development platform, supported

on Linux and AIX, consisting of the GNU compiler

collection (GCC) and the full suite of binutils.2 Early in

the project, support for the embedded PowerPC cores in

GCC and the binutils was limited to the PowerPC 403*, a

much simpler embedded core. Much of the work involved

was to enable the PPC440 and double-FPU instruction

set, and to tune the GCC machine description to

understand the PPC440 superscalar architecture,

including the complex integer I-pipe, the simple integer

and system instruction J-pipe, the load and store L-pipe,

and the floating-point F-pipe. More recently, with the

release of the GNU Compiler Collection (GCC) 3.4, the

Open Source community has graciously updated GCC

and the binutils to better understand the PPC440, causing

much of this early work to be obsolesced. Migration to

this newer release is underway. However, support for the

double FPU [4]—and the application binary interface

(ABI) changes it requires for quadword (16-byte)

alignment—is still necessary. In addition, a newly

discovered PPC440 erratum has required a simple

workaround in the compiler code generation back end.

2BINary UTILities, which support the GNU compilers by providing programs that
manipulate binary (machine-readable but not human-readable) object code and
executable files.

IBM J. RES. & DEV. VOL. 49 NO. 2/3 MARCH/MAY 2005 M. E. GIAMPAPA ET AL.

327

Host console
The BG/L bring-up host console provides an integrated

host environment to run ADE programs. It supplies a

centrally maintained machine configuration file that

defines separate physical partitions with compute and I/O

nodes. A user then specifies the partition name and a list

of nodes on which to run programs. The node ranges are

specified in terms of their x, y, z coordinates on the three-

dimensional torus.

The host console and a collection of host utilities

provide the following functionality:

� Initializing all BG/L nodes within a partition.
� Setting up the global barrier network and training

link chips in the BG/L midplane when necessary.
� Personalizing ADE application programs with x, y, z

coordinates for each node, along with user-supplied

arguments and environment variables.
� Loading and running ADE programs.
� Polling each running node for debug and status print

outputs.
� Logging error messages in a central RAS log when

hardware problems are found.

To the extent possible, the host console provides

this function in a manner similar to that used in the

simulation environments. This better supports the ability

to move test cases and diagnostics back and forth

between hardware and simulation.

Conclusion
In this paper, the design and use of the Blue Gene/L

advanced diagnostics environment have been presented,

with a focus on key architectural programming features

of BG/L to assist high-performance application

developers to more fully exploit the capabilities of the

machine. ADE has been used to create many hundreds of

test cases, ranging from short, simple tests that verify

correct operation of as little as a single DCR in the

design, to large, massively parallel hardware exercisers

that stress many thousands of nodes, probing for failures

and incorrect operation in ways that would generally not

be possible for traditional operating systems and

applications. Subsets of these tests have been

consolidated into the regression suite, run continually

during logic development for verification; the

manufacturing test suite, used for acceptance and burn-

in of new hardware; and the diagnostics suite, used for

ongoing BG/L machine maintenance and test. Experience

is being gained on a daily basis as the BG/L machine is

scaled. The diagnostics environment, tests, and tools will

continue to evolve to meet the RAS challenges of the

BG/L machine.

Acknowledgment
The authors gratefully acknowledge the hard work, test-

case development, support, suggestions, and advice for

improving ADE provided by the following individuals:

Daniel Beece, Lurng-Kuo Liu, Narasimha R. Adiga,

Balaji Gopalsamy, Arun R. Umamaheshwaran, Krishna

M. Desai, Blake G. Fitch, Aleksandr Raysubskiy, T. J. C.

Ward, James C. Sexton, George Chiu, and Paul Coteus.

The Blue Gene/L project has been supported and

partially funded by the Lawrence Livermore National

Laboratory on behalf of the United States Department of

Energy under Lawrence Livermore National Laboratory

Subcontract No. B517552.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Linus Torvalds in the
United States, other countries, or both.

References
1. A. Gara, M. A. Blumrich, D. Chen, G. Chiu, P. Coteus, M. E.

Giampapa, R. A. Haring, P. Heidelberger, D. Hoenicke, G. V.
Kopcsay, M. Ohmacht, B. D. Steinmacher-Burow, T. Takken,
and P. Vranas, ‘‘Overview of the Blue Gene/L System
Architecture,’’ IBM J. Res. & Dev. 49, No. 2/3, 195–212 (2005,
this issue).

2. M. E. Wazlowski, N. R. Adiga, D. K. Beece, R. Bellofatto,
M. A. Blumrich, D. Chen, M. B. Dombrowa, A. Gara, M. E.
Giampapa, R. A. Haring, P. Heidelberger, D. Hoenicke,
B. J. Nathanson, M. Ohmacht, R. Sharrar, S. Singh, B. D.
Steinmacher-Burow, R. B. Tremaine, M. Tsao, A. R.
Umamaheshwaran, and P. Vranas, ‘‘Verification Strategy for
the Blue Gene/L Chip,’’ IBM J. Res. & Dev. 49, No. 2/3, 303–
318 (2005, this issue).

3. IBM Corporation, IBM Document SA14–2523: IBM PPC440
Core User’s Manual; see http://www-306.ibm.com/chips/techlib/
techlib.nsf/techdocs/242E6A5364DF2EDE87256AE9005BD327.

4. K. Dockser, ‘‘ ‘Honey, I Shrunk the Supercomputer’—The
PowerPC 440 FPU Brings Supercomputing to IBM’s Blue
Logic Library,’’ IBM MicroNews 7, No. 4, 29–31 (November
2001).

5. Book-E Enhanced PowerPC Architecture; see http://
www-3.ibm.com/chips/techlib/techlib.nsf/techdocs/
852569B20050FF778525699600682CC7.

6. N. R. Adiga, M. A. Blumrich, D. Chen, P. Coteus, A. Gara,
M. E. Giampapa, P. Heidelberger, S. Singh, B. D. Steinmacher-
Burow, T. Takken, M. Tsao, and P. Vranas, ‘‘Blue Gene/L
Torus Interconnection Network,’’ IBM J. Res. & Dev. 49, No.
2/3, 265–276 (2005, this issue).

7. R. A. Haring, R. Bellofatto, A. A. Bright, P. G. Crumley,
M. B. Dombrowa, S. M. Douskey, M. R. Ellavsky, B.
Gopalsamy, D. Hoenicke, T. A. Liebsch, J. A. Marcella, and
M. Ohmacht, ‘‘Blue Gene/L Compute Chip: Control, Test, and
Bring-Up Infrastructure,’’ IBM J. Res. & Dev. 49, No. 2/3, 289–
301 (2005, this issue).

8. NewLib; see http://sources.redhat.com/newlib/.
9. R. S. Germain, Y. Zhestkov, M. Eleftheriou, A. Rayshubskiy,

F. Suits, T. J. C. Ward, and B. G. Fitch, ‘‘Early Performance
Data on the Blue Matter Molecular Simulation Framework,’’
IBM J. Res. & Dev. 49, No. 2/3, 447–455 (2005, this issue).

Received July 6, 2004; accepted for publication
October 18,

M. E. GIAMPAPA ET AL. IBM J. RES. & DEV. VOL. 49 NO. 2/3 MARCH/MAY 2005

328

2004; Internet publication April 12, 2005

Mark E. Giampapa IBMResearch Division, Thomas J. Watson
Research Center, P.O. Box 218, Yorktown Heights, New York 10598
(giampapa@us.ibm.com). Mr. Giampapa is a Senior Engineer in the
Exploratory Server Systems Department. He received a B.A. degree
in computer science from Columbia University. He joined the IBM
Research Division in 1984 to work in the areas of parallel and
distributed processing, and has focused his research on distributed
memory and shared memory parallel architectures and operating
systems. Mr. Giampapa has received three IBM Outstanding
Technical Achievement Awards for his work in distributed
processing, simulation, and parallel operating systems. He holds 15
patents, with several more pending, and has published ten papers.

Ralph Bellofatto IBM Research Division, Thomas J. Watson
Research Center, P.O. Box 218, Yorktown Heights, New York
10598 (ralphbel@us.ibm.com). Mr. Bellofatto is a Senior Software
Engineer. He has been responsible for various aspects of hardware
system verification and control system programming on the Blue
Gene/L project. He received B.S. and M.S. degrees from Ithaca
College in 1979 and 1980, respectively. He has worked as a
software engineer in a variety of industries. Mr. Bellofatto’s
interests include computer architecture, performance analysis
and tuning, network architecture, ASIC design, and systems
architecture and design. He is currently working on the control
system for Blue Gene/L.

Matthias A. Blumrich IBM Research Division, Thomas J.
Watson Research Center, P.O. Box 218, Yorktown Heights, New
York 10598 (blumrich@us.ibm.com). Dr. Blumrich is a Research
Staff Member in the Server Technology Department. He received
a B.E.E. degree from the State University of New York at Stony
Brook in 1986, and M.A. and Ph.D. degrees in computer science
from Princeton University in 1991 and 1996, respectively. In 1998
he joined the IBM Research Division, where he has worked on
scalable networking for servers and the Blue Gene supercomputing
project. Dr. Blumrich is an author or coauthor of two patents and
12 technical papers.

Dong Chen IBM Research Division, Thomas J. Watson
Research Center, P.O. Box 218, Yorktown Heights, New York
10598 (chendong@us.ibm.com). Dr. Chen is a Research Staff
Member in the Exploratory Server Systems Department. He
received his B.S. degree in physics from Peking University in 1990,
and M.A., M.Phil., and Ph.D. degrees in theoretical physics from
Columbia University in 1991, 1992, and 1996, respectively. He
continued as a postdoctoral researcher at the Massachusetts
Institute of Technology from 1996 to 1998. In 1999 he joined the
IBM Server Group, where he worked on optimizing applications
for IBM RS/6000* SP systems. In 2000 he transferred to the IBM
Thomas J. Watson Research Center, where he has been working on
many areas of the Blue Gene/L supercomputer and collaborating
on the QCDOC project. Dr. Chen is an author or coauthor of more
than 30 technical journal papers.

Marc Boris Dombrowa IBM Research Division, Thomas J.
Watson Research Center, P.O. Box 218, Yorktown Heights, New
York 10598 (dombrowa@us.ibm.com). Mr. Dombrowa received his

Dipl.-Ing. degree in electrical engineering from the University of
Hannover, Germany, in 1997. He was a very large scale integration
(VLSI) designer at the IBM VLSI Laboratory in Boeblingen,
Germany, from 1997 to 1998, performing memory design
verification and synthesis on S/390* Enterprise memory systems.
From 1998 to 2000 he was assigned to the S/390 Server Division at
the IBM Poughkeepsie facility to perform custom circuit design.
He moved to Blue Gene/L cellular systems chip development in
2001 and has been responsible for the high-level design, synthesis,
timing, and verification of the test interface of
the Blue Gene/L compute chip as well as design-for-testability
transformation for the entire chip, clock-tree verification,
and simulation setup for instruction program load for the chip
verification teams. Mr. Dombrowa received an IBM Outstanding
Achievement Award in 1998 for his S/390 contributions. He is co-
inventor of one patent. His research interests include computer
architecture, design for test, system bring-up, diagnostics, and
ASIC design. Mr. Dombrowa is currently working on the
manufacturing diagnostic software as well as the system-level
rack diagnostic test suite and bring-up for the Blue Gene/L
cluster.

Alan Gara IBM Research Division, Thomas J. Watson Research
Center, P.O. Box 218, Yorktown Heights, New York 10598
(alangara@us.ibm.com). Dr. Gara is a Research Staff Member at
the IBM Thomas J. Watson Research Center. He received his
Ph.D. degree in physics from the University of Wisconsin at
Madison in 1986. In 1998 Dr. Gara received the Gordon Bell
Award for the QCDSP supercomputer in the most cost-
effective category. He is the chief architect of the Blue Gene/L
supercomputer. Dr. Gara also led the design and verification of the
Blue Gene/L compute ASIC as well as the bring-up of the Blue
Gene/L prototype system.

Ruud A. Haring IBM Research Division, Thomas J. Watson
Research Center, P.O. Box 218, Yorktown Heights, New York
10598 (ruud@us.ibm.com). Dr. Haring is a Research Staff Member
at the IBM Thomas J. Watson Research Center. He received B.S.,
M.S., and Ph.D. degrees in physics from Leyden University, the
Netherlands, in 1977, 1979, and 1984, respectively. Upon joining
IBM in 1984, he initially studied surface science aspects of plasma
processing. Beginning in 1992, he became involved in electronic
circuit design on both microprocessors and application-specific
integrated circuits (ASICs). He is currently responsible for the
synthesis, physical design, and test aspects of the Blue Gene chip
designs. Dr. Haring has received an IBM Outstanding Technical
Achievement Award for contributions to the z900 mainframe, and
he holds several patents. His research interests include circuit
design and optimization, design for testability, and ASIC design.
Dr. Haring is a Senior Member of the IEEE.

Philip Heidelberger IBM Research Division, Thomas J.
Watson Research Center, P.O. Box 218, Yorktown Heights, New
York 10598 (philiph@us.ibm.com). Dr. Heidelberger received a
B.A. degree in mathematics from Oberlin College in 1974 and a
Ph.D. degree in operations research from Stanford University in
1978. He has been a Research Staff Member at the IBM Thomas J.

IBM J. RES. & DEV. VOL. 49 NO. 2/3 MARCH/MAY 2005 M. E. GIAMPAPA ET AL.

329

Watson Research Center since 1978. His research interests include
modeling and analysis of computer performance, probabilistic
aspects of discrete event simulations, parallel simulation, and
parallel computer architectures. He has authored more than 100
papers in these areas. Dr. Heidelberger has served as Editor-in-
Chief of the ACM Transactions on Modeling and Computer
Simulation. He was the general chairman of the ACM Special
Interest Group on Measurement and Evaluation (SIGMETRICS)
Performance 2001 Conference, the program cochairman of the
ACM SIGMETRICS Performance 1992 Conference, and the
program chairman of the 1989 Winter Simulation Conference.
Dr. Heidelberger is currently the vice president of ACM
SIGMETRICS, and is a Fellow of the ACM and the IEEE.

Dirk Hoenicke IBM Research Division, Thomas J. Watson
Research Center, P.O. Box 218, Yorktown Heights, New York
10598 (hoenicke@us.ibm.com). Mr. Hoenicke received a Dipl.
Inform. (M.S.) degree in computer science from the University
of Tuebingen, Germany, in 1998. Since then, Mr. Hoenicke has
worked on a wide range of aspects of two prevalent processor
architectures: ESA/390 and PowerPC. He is currently a member of
the Cellular Systems Chip Development Group, where he focuses
on the architecture, design, verification, and implementation of the
Blue Gene system-on-a-chip (SoC) supercomputer family. In
particular, he was responsible for the architecture, design, and
verification effort of the collective network and defined and
implemented many other parts of the BG/L ASIC. His areas
of expertise include high-performance computer systems and
advanced memory and network architectures, as well as power-,
area-, and complexity-efficient logic designs.

Gerard V. Kopcsay IBM Research Division, Thomas J.
Watson Research Center, P.O. Box 218, Yorktown Heights, New
York 10598 (kopcsay@us.ibm.com). Mr. Kopcsay is a Research
Staff Member. He received a B.E. degree in electrical engineering
from Manhattan College in 1969 and an M.S. degree in electrical
engineering from the Polytechnic Institute of Brooklyn in 1974.
From 1969 to 1978 he was with the AIL Division of the Eaton
Corporation, where he worked on the design and development
of low-noise microwave receivers. He joined the IBM Thomas J.
Watson Research Center in 1978. Mr. Kopcsay has worked on the
design, analysis, and measurement of interconnection technologies
used in computer packages at IBM. His research interests include
the measurement and simulation of multi-Gb/s interconnects,
high-performance computer design, and applications of short-
pulse phenomena. He is currently working on the design and
implementation of the Blue Gene/L supercomputer. Mr. Kopcsay
is a member of the American Physical Society.

Ben J. Nathanson IBM Research Division, Thomas J. Watson
Research Center, P.O. Box 218, Yorktown Heights, New York
10598 (bjnath@us.ibm.com). Mr. Nathanson joined the IBM
Research Division in 1985 and has worked on the parallel
computers RP3, Vulcan, SP1, SP2, and Blue Gene/L. He received
IBM Outstanding Technical Achievement Awards for hardware
contributions to SP1 and SP2 and Research Division Awards for

RP3 bring-up and verification work on memory compression
hardware. Mr. Nathanson holds M.S. and B.S. degrees in electrical
engineering from Columbia University and is a member of Tau
Beta Pi and Eta Kappa Nu. His current focus is hardware
verification.

Burkhard D. Steinmacher-Burow IBM Research Division,
Thomas J. Watson Research Center, P.O. Box 218, Yorktown
Heights, New York 10598 (steinmac@us.ibm.com). Dr.
Steinmacher-Burow is a Research Staff Member in the Exploratory
Server Systems Department. He received a B.S. degree in physics
from the University of Waterloo in 1988, and M.S. and Ph.D.
degrees from the University of Toronto in 1990 and 1994,
respectively. He subsequently joined the Universitaet Hamburg
and then the Deutsches Elektronen-Synchrotron to work in
experimental particle physics. In 2001, he joined the IBM Thomas
J. Watson Research Center and has since worked in many
hardware and software areas of the Blue Gene research program.
Dr. Steinmacher-Burow is an author or coauthor of more than 80
technical papers.

Martin Ohmacht IBM Research Division, Thomas J. Watson
Research Center, P.O. Box 218, Yorktown Heights, New York
10598 (mohmacht@us.ibm.com). Dr. Ohmacht received his Dipl.-
Ing. and Dr.-Ing. degrees in electrical engineering from the
University of Hannover, Germany, in 1994 and 2001, respectively.
He joined the IBM Research Division in 2001 and has worked on
memory subsystem architecture and implementation for the Blue
Gene project. His research interests include computer architecture,
design and verification of multiprocessor systems, and compiler
optimizations.

Valentina Salapura IBM Thomas J. Watson Research
Center, P.O. Box 218, Yorktown Heights, New York 10598
(salapura@us.ibm.com). Dr. Salapura is a Research Staff Member
with the IBM Thomas J. Watson Research Center, where she has
contributed to the architecture and implementation of three
generations of Blue Gene systems (BG/C, BG/L, and BG/P),
focusing on multiprocessor interconnect and synchronization and
multithreaded architecture design and evaluation. She received a
Ph.D. degree from the Vienna University of Technology in 1996.
Before joining IBM in 2000, she was a faculty member with the
Computer Engineering Department at the Vienna University of
Technology. In addition to her work on high-performance systems,
she has been a driving force in the design and evaluation of the
SanLight network multiprocessor architecture. Dr. Salapura is
the author of more than 50 papers on design methodology,
configurable architectures, network processors, and high-
performance computer systems; she holds one patent and has
19 patents pending.

Pavlos Vranas IBM Research Division, Thomas J. Watson
Research Center, P.O. Box 218, Yorktown Heights, New York
10598 (vranasp@us.ibm.com). Dr. Vranas is a Research Staff
Member in the Deep Computing Systems Department at the IBM
Thomas J. Watson Research Center. He received his B.S. degree
in physics from the University of Athens in 1985, and his M.S.
and Ph.D. degrees in theoretical physics from the University of

M. E. GIAMPAPA ET AL. IBM J. RES. & DEV. VOL. 49 NO. 2/3 MARCH/MAY 2005

330

California at Davis, in 1987 and 1990, respectively. He continued
research in theoretical physics as a postdoctoral researcher at the
Supercomputer Computations Research Institute, Florida State
University (1990–1994), at Columbia University (1994–1998), and
at the University of Illinois at Urbana–Champaign (1998–2000). In
2000 he joined IBM at the Thomas J. Watson Research Center,
where he has worked on the architecture, design, verification,
and bring-up of the Blue Gene/L supercomputer and is
continuing his research in theoretical physics. Dr. Vranas is
an author or coauthor of 59 papers in supercomputing and
theoretical physics.

IBM J. RES. & DEV. VOL. 49 NO. 2/3 MARCH/MAY 2005 M. E. GIAMPAPA ET AL.

331

