
Testing and Inspecting to Ensure
High Quality

© Lethbridge/Laganière 2005 Chapter 10: Testing and Inspecting for High Quality 2

Basic definitions
• A failure is an unacceptable behaviour exhibited by a system

—The frequency of failures measures the reliability

—An important design objective is to achieve a very low failure rate and

hence high reliability.

—A failure can result from a violation of an explicit or implicit

requirement

• A defect is a flaw in any aspect of the system that contributes, or may

potentially contribute, to the occurrence of one or more failures

—It might take several defects to cause a particular failure

• An error is a slip-up or inappropriate decision by a software developer that

leads to the introduction of a defect

© Lethbridge/Laganière 2005 Chapter 10: Testing and Inspecting for High Quality 3

Failure, Defect, or Error?
• A software engineer, working in a hurry, unintentionally deletes an

important line of source code

© Lethbridge/Laganière 2005 Chapter 10: Testing and Inspecting for High Quality 4

Failure, Defect, or Error?
• A software engineer, working in a hurry, unintentionally deletes an

important line of source code

— Error

© Lethbridge/Laganière 2005 Chapter 10: Testing and Inspecting for High Quality 5

Failure, Defect, or Error?
• On January 1, 2040, the system reports the date as January 1, 1940

© Lethbridge/Laganière 2005 Chapter 10: Testing and Inspecting for High Quality 6

Failure, Defect, or Error?
• On January 1, 2040, the system reports the date as January 1, 1940

— Failure

© Lethbridge/Laganière 2005 Chapter 10: Testing and Inspecting for High Quality 7

Failure, Defect, or Error?
• No design documentation or source code comments are provided for a

complex algorithm

© Lethbridge/Laganière 2005 Chapter 10: Testing and Inspecting for High Quality 8

Failure, Defect, or Error?
• No design documentation or source code comments are provided for a

complex algorithm

— Defect

© Lethbridge/Laganière 2005 Chapter 10: Testing and Inspecting for High Quality 9

Failure, Defect, or Error?
• A fixed-size array of length 10 is used to maintain the list of courses taken

by a student during one semester. The requirements are silent about the

maximum number of courses a student may take at any one time.

© Lethbridge/Laganière 2005 Chapter 10: Testing and Inspecting for High Quality 10

Failure, Defect, or Error?
• A fixed-size array of length 10 is used to maintain the list of courses taken

by a student during one semester. The requirements are silent about the

maximum number of courses a student may take at any one time.

— Defect

© Lethbridge/Laganière 2005 Chapter 10: Testing and Inspecting for High Quality 11

Effective and Efficient Testing
To test effectively, you must use a strategy that uncovers

as many defects as possible.

To test efficiently, you must find the largest possible

number of defects using the fewest possible tests

• Testing is like detective work:

—The tester must try to understand how programmers

and designers think, so as to better find defects.

—The tester must not leave anything uncovered, and

must be suspicious of everything.

—It does not pay to take an excessive amount of time;

tester has to be efficient.

© Lethbridge/Laganière 2005 Chapter 10: Testing and Inspecting for High Quality 12

Black-box testing

Testers provide the system with inputs and observe the

outputs

• They can see none of:

—The source code

—The internal data

—Any of the design documentation describing the

system’s internals

© Lethbridge/Laganière 2005 Chapter 10: Testing and Inspecting for High Quality 13

Glass-box testing

Also called ‘white-box’ or ‘structural’ testing

Testers have access to the system design

• They can

—Examine the design documents

—View the code

—Observe at run time the steps taken by algorithms

and their internal data

• Individual programmers often informally employ glass-

box testing to verify their own code

© Lethbridge/Laganière 2005 Chapter 10: Testing and Inspecting for High Quality 14

Equivalence classes
• It is inappropriate to test by brute force, using every possible input

value

—Takes a huge amount of time

—Is impractical

—Is pointless!

• You should divide the possible inputs into groups which you believe

will be treated similarly by all algorithms.

—Such groups are called equivalence classes.

—A tester needs only to run one test per equivalence class

—The tester has to

- understand the required input,

- appreciate how the software may have been designed

© Lethbridge/Laganière 2005 Chapter 10: Testing and Inspecting for High Quality 15

Examples of equivalence classes

• Valid input is a month number (1-12)

—Equivalence classes are: [- ..0], [1..12], [13..]∞ ∞

• Valid input is one of ten strings representing a type of

fuel

—Equivalence classes are

- 10 classes, one for each string

- A class representing all other strings

© Lethbridge/Laganière 2005 Chapter 10: Testing and Inspecting for High Quality 16

Testing at boundaries of equivalence
classes

• More errors in software occur at the boundaries of

equivalence classes

• The idea of equivalence class testing should be

expanded to specifically test values at the extremes of

each equivalence class

—E.g. The number 0 often causes problems

• E.g.: If the valid input is a month number (1-12)

—Test equivalence classes as before

—Test 0, 1, 12 and 13 as well as very large positive

and negative values

© Lethbridge/Laganière 2005 Chapter 10: Testing and Inspecting for High Quality 17

Detecting specific categories of defects

A tester must try to uncover any defects the other

software engineers might have introduced.

• This means designing tests that explicitly try to catch a

range of specific types of defects that commonly occur

© Lethbridge/Laganière 2005 Chapter 10: Testing and Inspecting for High Quality 18

Defects in Ordinary Algorithms

Incorrect logical conditions

• Defect:

—The logical conditions that govern looping and if-

then-else statements are wrongly formulated.

• Testing strategy:

—Use equivalence class and boundary testing.

—Consider as an input each variable used in a rule or

logical condition.

© Lethbridge/Laganière 2005 Chapter 10: Testing and Inspecting for High Quality 19

Example of incorrect logical conditions
defect

What is the hard-to-find defect in the following code?

• The landing gear must be deployed whenever the plane is within 2 minutes

from landing or takeoff, or within 2000 feet from the ground. If visibility is

less than 1000 feet, then the landing gear must be deployed whenever the

plane is within 3 minutes from landing or lower than 2500 feet

if(!landingGearDeployed &&

 (min(now-takeoffTime,estLandTime-now))<

 (visibility < 1000 ? 180 :120) ||

 relativeAltitude <

 (visibility < 1000 ? 2500 :2000)

)

{

 throw

 new LandingGearException();

}

© Lethbridge/Laganière 2005 Chapter 10: Testing and Inspecting for High Quality 20

Defects in Ordinary Algorithms

Performing a calculation in the wrong part of a control construct

• Defect:

—The program performs an action when it should not, or does not

perform an action when it should.

—Typically caused by inappropriately excluding or including the

action from a loop or a if construct.

• Testing strategies:

—Design tests that execute each loop zero times, exactly once,

and more than once.

—Anything that could happen while looping is made to occur on

the first, an intermediate, and the last iteration.

© Lethbridge/Laganière 2005 Chapter 10: Testing and Inspecting for High Quality 21

Example of performing a calculation in the
wrong part of a control construct

while(j<maximum)
{
 k=someOperation(j);
 j++;
}
if(k==-1) signalAnError();

© Lethbridge/Laganière 2005 Chapter 10: Testing and Inspecting for High Quality 22

Defects in Ordinary Algorithms

Not terminating a loop or recursion

• Defect:

—A loop or a recursion does not always terminate, i.e.

it is ‘infinite’.

• Testing strategies:

—Analyse what causes a repetitive action to be

stopped.

—Run test cases that you anticipate might not be

handled correctly.

© Lethbridge/Laganière 2005 Chapter 10: Testing and Inspecting for High Quality 23

Defects in Ordinary Algorithms

Not setting up the correct preconditions for an

algorithm

• Defect:

—Preconditions state what must be true before the

algorithm should be executed.

—A defect would exist if a program proceeds to do its

work, even when the preconditions are not satisfied.

• Testing strategy:

—Run test cases in which each precondition is not

satisfied.

© Lethbridge/Laganière 2005 Chapter 10: Testing and Inspecting for High Quality 24

Defects in Ordinary Algorithms

Not handling null conditions

• Defect:

—A null condition is a situation where there normally are one or

more data items to process, but sometimes there are none,

—e.g. 0 members of a company division

—It is a defect when a program behaves abnormally when a null

condition is encountered.

—e.g. divide by 0 to compute an average

• Testing strategy:

—Brainstorm to determine unusual conditions and run

appropriate tests.

© Lethbridge/Laganière 2005 Chapter 10: Testing and Inspecting for High Quality 25

Defects in Ordinary Algorithms
Not handling singleton or non-singleton conditions

• Defect:

—A singleton condition occurs when there is normally
more than one of something, but sometimes there is
only one,

—e.g, making 2-person teams from n people

—A non-singleton condition is the inverse.

—Defects occur when the unusual case is not properly
handled.

• Testing strategy:

—Brainstorm to determine unusual conditions and run
appropriate tests.

© Lethbridge/Laganière 2005 Chapter 10: Testing and Inspecting for High Quality 26

Defects in Ordinary Algorithms

Off-by-one errors

• Defect:

—A program inappropriately adds or subtracts one.

—Or loops one too many times or one too few times.

—This is a particularly common type of defect.

• Testing strategy:

—Develop tests in which you verify that the program:

- computes the correct numerical answer.

- performs the correct number of iterations.

© Lethbridge/Laganière 2005 Chapter 10: Testing and Inspecting for High Quality 27

Example of off-by-one defect

for (i=1; i<arrayname.length; i++)
{
 /* do something */
}

while (iterator.hasNext())
{
 anOperation(++val);
}

Use Iterators to help eliminate these defects

© Lethbridge/Laganière 2005 Chapter 10: Testing and Inspecting for High Quality 28

Defects in Ordinary Algorithms

Operator precedence errors

• Defect:

—An operator precedence error occurs when a programmer omits

needed parentheses, or puts parentheses in the wrong place.

—Operator precedence errors are often extremely obvious...

- but can occasionally lie hidden until special conditions arise.

—E.g. If x*y+z should be x*(y+z) this would be hidden if z was

normally zero.

• Testing:

—In software that computes formulae, run tests that anticipate

such defects.

© Lethbridge/Laganière 2005 Chapter 10: Testing and Inspecting for High Quality 29

Defects in Ordinary Algorithms

Use of inappropriate standard algorithms

• Defect:

—An inappropriate standard algorithm is one that is

unnecessarily inefficient or has some other property

that is widely recognized as being bad.

• Testing strategies:

—The tester has to know the properties of algorithms

and design tests that will determine whether any

undesirable algorithms have been implemented.

© Lethbridge/Laganière 2005 Chapter 10: Testing and Inspecting for High Quality 30

Example of inappropriate standard
algorithms

• An inefficient sort algorithm

—The most classical ‘bad’ choice of algorithm is sorting

using a so-called ‘bubble sort’

• An inefficient search algorithm

—Ensure that the search time does not increase

unacceptably as the list gets longer

—Check that the position of the searched item does not

have a noticeable impact on search time.

• A non-stable sort

• A search or sort that is case sensitive when it should not be, or

vice versa

© Lethbridge/Laganière 2005 Chapter 10: Testing and Inspecting for High Quality 31

Defects in Numerical Algorithms

Not using enough bits or digits

• Defect:

—A system does not use variables capable of
representing the largest values that could be stored.

—When the capacity is exceeded, an unexpected
exception is thrown, or the data stored is incorrect.

—e.g. using Integer instead of BigInteger

• Testing strategies:

—Test using very large numbers to ensure the system
has a wide enough margin of error.

© Lethbridge/Laganière 2005 Chapter 10: Testing and Inspecting for High Quality 32

Defects in Numerical Algorithms
Not using enough places after the decimal point or significant
figures

• Defects:

—A floating point value might not have the capacity to store
enough significant figures.

—A fixed point value might not store enough places after the
decimal point.

— A typical manifestation is excessive rounding.

—e.g. 4 significant digits can represent $33.16 but not $0.0344

• Testing strategies:

—Perform calculations that involve many significant figures, and
large differences in magnitude.

—Verify that the calculated results are correct.

© Lethbridge/Laganière 2005 Chapter 10: Testing and Inspecting for High Quality 33

Defects in Numerical Algorithms

Ordering operations poorly so errors build up

• Defect:

—A large number does not store enough significant

figures to be able to accurately represent the result.

• Testing strategies:

—Make sure the program works with inputs that have

large positive and negative exponents.

—Have the program work with numbers that vary a lot

in magnitude.

- Make sure computations are still accurately performed.

© Lethbridge/Laganière 2005 Chapter 10: Testing and Inspecting for High Quality 34

Defects in Numerical Algorithms

Assuming a floating point value will be exactly equal to

some other value

• Defect:

—If you perform an arithmetic calculation on a

floating point value, then the result will very rarely

be computed exactly.

—To test equality, you should always test if it is within

a small range around that value.

• Testing strategies:

—Standard boundary testing should detect this type of

defect.

© Lethbridge/Laganière 2005 Chapter 10: Testing and Inspecting for High Quality 35

Example of defect in testing floating value
equality

for (double d = 0.0; d != 10.0; d+=2.0) {...}

Bad:

© Lethbridge/Laganière 2005 Chapter 10: Testing and Inspecting for High Quality 36

Example of defect in testing floating value
equality

for (double d = 0.0; d != 10.0; d+=2.0) {...}

for (double d = 0.0; d < 10.0; d+=2.0) {...}

Better:

Bad:

© Lethbridge/Laganière 2005 Chapter 10: Testing and Inspecting for High Quality 37

Defects in Timing and Co-ordination

Deadlock and livelock

• Defects:

—A deadlock is a situation where two or more threads are

stopped, waiting for each other to do something.

- The system is hung

—Livelock is similar, but now the system can do some

computations, but can never get out of some states.

© Lethbridge/Laganière 2005 Chapter 10: Testing and Inspecting for High Quality 38

Defects in Timing and Co-ordination
Deadlock and livelock

• Testing strategies:

—Deadlocks and livelocks occur due to unusual

combinations of conditions that are hard to anticipate

or reproduce.

—It is often most effective to use inspection to detect

such defects, rather than testing alone.

—However, when testing:

- Vary the time consumption of different threads.

- Run a large number of threads concurrently.

- Deliberately deny resources to one or more threads.

© Lethbridge/Laganière 2005 Chapter 10: Testing and Inspecting for High Quality 39

Example of deadlock

© Lethbridge/Laganière 2005 Chapter 10: Testing and Inspecting for High Quality 40

Defects in Timing and Co-ordination

Critical races

• Defects:

—One thread experiences a failure because another

thread interferes with the ‘normal’ sequence of

events.

• Testing strategies:

—It is particularly hard to test for critical races using

black box testing alone.

—One possible, although invasive, strategy is to

deliberately slow down one of the threads.

—Use inspection.

© Lethbridge/Laganière 2005 Chapter 10: Testing and Inspecting for High Quality 41

Example of critical race

a) Normal b) Abnormal due to delay in thread A

© Lethbridge/Laganière 2005 Chapter 10: Testing and Inspecting for High Quality 42

Semaphore and synchronization

Critical races can be prevented by locking data so that

they cannot be accessed by other threads when they are

not ready

• One widely used locking mechanism is called a

semaphore.

• In Java, the synchronized keyword can be used.

—It ensures that no other thread can access an object

until the synchronized method terminates.

© Lethbridge/Laganière 2005 Chapter 10: Testing and Inspecting for High Quality 43

Example of a synchronized method

a) Abnormal: The value put by
 thread A is immediately
 overwritten by the value put
 by thread B.

b) The problem has been solved
 by accessing the data using
 synchronized methods

© Lethbridge/Laganière 2005 Chapter 10: Testing and Inspecting for High Quality 44

Defects in Handling Stress and Unusual
Situations

• Insufficient throughput or response time on minimal

configurations

© Lethbridge/Laganière 2005 Chapter 10: Testing and Inspecting for High Quality 45

Defects in Handling Stress and Unusual
Situations

• Insufficient throughput or response time on minimal

configurations

• Defects in handling peak loads

© Lethbridge/Laganière 2005 Chapter 10: Testing and Inspecting for High Quality 46

Defects in Handling Stress and Unusual
Situations

• Insufficient throughput or response time on minimal

configurations

• Defects in handling peak loads

• Incompatibility with specific configurations of hardware

or software

© Lethbridge/Laganière 2005 Chapter 10: Testing and Inspecting for High Quality 47

Defects in Handling Stress and Unusual
Situations

• Insufficient throughput or response time on minimal

configurations

• Defects in handling peak loads

• Incompatibility with specific configurations of hardware

or software

• Inappropriate management of resources

➢ e.g., memory leaks

© Lethbridge/Laganière 2005 Chapter 10: Testing and Inspecting for High Quality 48

Defects in Handling Stress and Unusual
Situations

• Insufficient throughput or response time on minimal

configurations

• Defects in handling peak loads

• Incompatibility with specific configurations of hardware

or software

• Inappropriate management of resources

➢ e.g., memory leaks

• Defects in the process of recovering from a crash

➢ e.g., removing locks from databases

© Lethbridge/Laganière 2005 Chapter 10: Testing and Inspecting for High Quality 49

Documentation defects

• Defect:

—The software has a defect if the user manual,

reference manual or on-line help:

- gives incorrect information

- fails to give information relevant to a problem.

• Testing strategy:

—Examine all the end-user documentation, making

sure it is correct.

—Work through the use cases, making sure that each

of them is adequately explained to the user.

© Lethbridge/Laganière 2005 Chapter 10: Testing and Inspecting for High Quality 50

Writing Formal Test Cases and Test Plans

A test case is an explicit set of instructions designed to

detect a particular class of defect in a software system.

• A test case can give rise to many tests.

• Each test is a particular running of the test case on a

particular version of the system.

© Lethbridge/Laganière 2005 Chapter 10: Testing and Inspecting for High Quality 51

Test plans

A test plan is a document that contains a complete set of test cases

for a system

—Along with other information about the testing process.

• The test plan is one of the standard forms of documentation.

• If a project does not have a test plan:

—Testing will inevitably be done in an ad-hoc manner.

—Leading to poor quality software.

• The test plan should be written long before the testing starts.

• You can start to develop the test plan once you have developed the

requirements.

© Lethbridge/Laganière 2005 Chapter 10: Testing and Inspecting for High Quality 52

Information to include in a formal test case

A. Identification and classification:

—Each test case should have a number, and may also be
given a descriptive title.

—The system, subsystem or module being tested should
also be clearly indicated.

—The importance of the test case should be indicated.

B. Instructions:

—Tell the tester exactly what to do.

—The tester should not normally have to refer to any
documentation in order to execute the instructions.

© Lethbridge/Laganière 2005 Chapter 10: Testing and Inspecting for High Quality 53

Information to include in a formal test case

C. Expected result:

—Tells the tester what the system should do in response to
the instructions.

—The tester reports a failure if the expected result is not
encountered.

D. Cleanup (when needed):

—Tells the tester how to make the system go ‘back to
normal’ or shut down after the test.

© Lethbridge/Laganière 2005 Chapter 10: Testing and Inspecting for High Quality 54

Levels of importance of test cases
• Level 1:

—First pass critical test cases.

—Designed to verify the system runs and is safe.

—No further testing is possible if a Level 1 test tails.

• Level 2:

—General test cases.

—Verify that day-to-day functions work correctly.

—Still permit testing of other aspects of the system if a

Level 2 test fails.

© Lethbridge/Laganière 2005 Chapter 10: Testing and Inspecting for High Quality 55

Levels of importance of test cases
• Level 3:

—Detailed test cases.

—Test requirements that are of lesser importance.

—The system functions most of the time but has not yet met

quality objectives.

© Lethbridge/Laganière 2005 Chapter 10: Testing and Inspecting for High Quality 56

Strategies for Testing Large Systems
Big bang testing versus integration testing

• In big bang testing, you take the entire system and test it

as a unit

• A better strategy in most cases is incremental testing:

—You test each individual subsystem in isolation

—Continue testing as you add more and more

subsystems to the final product

—Incremental testing can be performed horizontally or

vertically, depending on the architecture

- Horizontal testing can be used when the system is divided

into separate sub-applications

© Lethbridge/Laganière 2005 Chapter 10: Testing and Inspecting for High Quality 57

Top down testing

• Start by testing just the user interface.

• The underlying functionality are simulated by stubs.

—Pieces of code that have the same interface as the

lower level functionality.

—Do not perform any real computations or manipulate

any real data.

• Then you work downwards, integrating lower and lower

layers.

• The big drawback to top down testing is the cost of

writing the stubs.

© Lethbridge/Laganière 2005 Chapter 10: Testing and Inspecting for High Quality 58

Bottom-up testing

• Start by testing the very lowest levels of the software.

• You needs drivers to test the lower layers of software.

—Drivers are simple programs designed specifically

for testing that make calls to the lower layers.

• Drivers in bottom-up testing have a similar role to stubs

in top-down testing, and are time-consuming to write.

© Lethbridge/Laganière 2005 Chapter 10: Testing and Inspecting for High Quality 59

Sandwich testing

• Sandwich testing is a hybrid between bottom-up and top

down testing.

• Test the user interface in isolation, using stubs.

• Test the very lowest level functions, using drivers.

• When the complete system is integrated, only the middle

layer remains on which to perform the final set of tests.

© Lethbridge/Laganière 2005 Chapter 10: Testing and Inspecting for High Quality 60

Vertical strategies for incremental
integration testing

© Lethbridge/Laganière 2005 Chapter 10: Testing and Inspecting for High Quality 61

The test-fix-test cycle
When a failure occurs during testing:

• Each failure report is entered into a failure tracking
system.

• It is then screened and assigned a priority.

• Low-priority failures might be put on a known bugs list
that is included with the software’s release notes.

• Some failure reports might be merged if they appear to
result from the same defects.

• Somebody is assigned to investigate a failure.

• That person tracks down the defect and fixes it.

• Finally a new version of the system is created, ready to
be tested again.

© Lethbridge/Laganière 2005 Chapter 10: Testing and Inspecting for High Quality 62

Deciding when to stop testing

• All of the level 1 test cases must have been successfully
executed.

• Certain pre-defined percentages of level 2 and level 3
test cases must have been executed successfully.

• The targets must have been achieved and are maintained
for at least two cycles of ‘builds’.

—A build involves compiling and integrating all the
components.

—Failure rates can fluctuate from build to build as:
- Different sets of regression tests are run.

- New defects are introduced.

© Lethbridge/Laganière 2005 Chapter 10: Testing and Inspecting for High Quality 63

The roles of people involved in testing

• The first pass of unit and integration testing is called

developer testing.

—Preliminary testing performed by the software

developers who do the design.

• Independent testing is performed by a separate group.

—They do not have a vested interest in seeing as many

test cases pass as possible.

—They develop specific expertise in how to do good

testing, and how to use testing tools.

© Lethbridge/Laganière 2005 Chapter 10: Testing and Inspecting for High Quality 64

Testing performed by users and clients

• Alpha testing

—Performed by the user or client, but under the supervision
of the software development team.

• Beta testing

—Performed by the user or client in a normal work
environment.

—Recruited from the potential user population.

—An open beta release is the release of low-quality
software to the general population.

• Acceptance testing

—Performed by users and customers.

—However, the customers do it on their own initiative.

© Lethbridge/Laganière 2005 Chapter 10: Testing and Inspecting for High Quality 65

Inspections

An inspection is an activity in which one or more people

systematically

• Examine source code or documentation, looking for

defects.

• Normally, inspection involves a meeting...

—Although participants can also inspect alone at their

desks.

© Lethbridge/Laganière 2005 Chapter 10: Testing and Inspecting for High Quality 66

Principles of inspecting
• Inspect the most important documents of all types

—code, design documents, test plans and requirements

• Choose an effective and efficient inspection team

—between two and five people

—Including experienced software engineers

• Require that participants prepare for inspections

—They should study the documents prior to the

meeting and come prepared with a list of defects

• Only inspect documents that are ready

—Attempting to inspect a very poor document will

result in defects being missed

© Lethbridge/Laganière 2005 Chapter 10: Testing and Inspecting for High Quality 67

Principles of inspecting

• Avoid discussing how to fix defects

—Fixing defects can be left to the author

• Avoid discussing style issues

—Issues like are important, but should be discussed

separately

• Do not rush the inspection process

—A good speed to inspect is

- 200 lines of code per hour (including comments)

- or ten pages of text per hour

© Lethbridge/Laganière 2005 Chapter 10: Testing and Inspecting for High Quality 68

Principles of inspecting

• Avoid making participants tired

—It is best not to inspect for more than two hours at a

time, or for more than four hours a day

• Keep and use logs of inspections

—You can also use the logs to track the quality of the

design process

• Re-inspect when changes are made

—You should re-inspect any document or code that is

changed more than 20%

© Lethbridge/Laganière 2005 Chapter 10: Testing and Inspecting for High Quality 69

Inspecting compared to testing

• Both testing and inspection rely on different aspects of

human intelligence.

• Testing can find defects whose consequences are

obvious but which are buried in complex code.

• Inspecting can find defects that relate to

maintainability or efficiency.

• The chances of mistakes are reduced if both activities

are performed.

© Lethbridge/Laganière 2005 Chapter 10: Testing and Inspecting for High Quality 70

Post-mortem analysis

Looking back at a project after it is complete, or after a

release,

• You look at the design and the development process

• Identify those aspects which, with benefit of hindsight,

you could have done better

• You make plans to do better next time

	PowerPoint Presentation
	10.1 Basic definitions
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	10.2 Effective and Efficient Testing
	Black-box testing
	Glass-box testing
	Equivalence classes
	Examples of equivalence classes
	Testing at boundaries of equivalence classes
	Detecting specific categories of defects
	10.3 Defects in Ordinary Algorithms
	Example of incorrect logical conditions defect
	Defects in Ordinary Algorithms
	Example of performing a calculation in the wrong part of a control construct
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Example of off-by-one defect
	Slide 28
	Slide 29
	Example of inappropriate standard algorithms
	10.4 Defects in Numerical Algorithms
	Defects in Numerical Algorithms
	Slide 33
	Slide 34
	Example of defect in testing floating value equality
	Slide 36
	10.5 Defects in Timing and Co-ordination
	Defects in Timing and Co-ordination
	Example of deadlock
	Defects in Timing and Co-ordination
	Example of critical race
	Semaphore and synchronization
	Example of a synchronized method
	Slide 44
	10.6 Defects in Handling Stress and Unusual Situations
	Slide 46
	Slide 47
	Slide 48
	10.7 Documentation defects
	10.8 Writing Formal Test Cases and Test Plans
	Test plans
	Information to include in a formal test case
	Slide 53
	Levels of importance of test cases
	Slide 55
	10.9 Strategies for Testing Large Systems
	Top down testing
	Bottom-up testing
	Sandwich testing
	Vertical strategies for incremental integration testing
	The test-fix-test cycle
	Deciding when to stop testing
	The roles of people involved in testing
	Testing performed by users and clients
	10.10 Inspections
	Principles of inspecting
	Slide 67
	Slide 68
	Inspecting compared to testing
	Post-mortem analysis

