
MANAGED BEANS

Topics in This Chapter

• “Definition of a Bean” on page 37

• “Message Bundles” on page 42

• “A Sample Application” on page 46

• “Backing Beans” on page 53

• “Bean Scopes” on page 54

• “Configuring Beans” on page 57

• “The Syntax of Value Expressions” on page 64

managed-beans-VM.fm Page 36 Monday, April 2, 2007 10:46 AM

ChapterChapter

37

2

A central theme of web application design is the separation of presentation and
business logic. JSF uses beans to achieve this separation. JSF pages refer to bean
properties, and the program logic is contained in the bean implementation
code. Because beans are so fundamental to JSF programming, we discuss them
in detail in this chapter.

The first half of the chapter discusses the essential features of beans that every
JSF developer needs to know. We then present an example program that puts
these essentials to work. The remaining sections cover more technical aspects
about bean configuration and value expressions. You can safely skip these sec-
tions when you first read this book and return to them when the need arises.

Definition of a Bean

According to the JavaBeans specification (available at http://java.sun.com/
products/javabeans/), a Java bean is “a reusable software component that can be
manipulated in a builder tool.” That is a pretty broad definition and indeed, as
you will see in this chapter, beans are used for a variety of purposes.

At first glance, a bean seems to be similar to an object. However, beans serve a
different purpose. Objects are created and manipulated inside a Java program
when the program calls constructors and invokes methods. Yet, beans can be
configured and manipulated without programming.

managed-beans-VM.fm Page 37 Monday, April 2, 2007 10:46 AM

Chapter 2 ■ Managed Beans38

NOTE: You may wonder where the term “bean” comes from. Well, Java is a
synonym for coffee (at least in the United States), and coffee is made from
beans that encapsulate its flavor. You may find the analogy cute or annoy-
ing, but the term has stuck.

The “classic” application for JavaBeans is a user interface builder. A palette
window in the builder tool contains component beans such as text fields,
sliders, checkboxes, and so on. Instead of writing Swing code, you use a user
interface designer to drag and drop component beans from the palette into a
form. Then you can customize the components by selecting property values
from a property sheet dialog (see Figure 2–1).

Figure 2–1 Customizing a bean in a GUI builder

managed-beans-VM.fm Page 38 Monday, April 2, 2007 10:46 AM

Definition of a Bean 39

In the context of JSF, beans go beyond user interface components. You use
beans whenever you need to wire up Java classes with web pages or configura-
tion files.

Consider the login application in Chapter 1, shown in “A Simple Example” on
page 6. A UserBean instance is configured in the faces-config.xml file:

<managed-bean>
 <managed-bean-name>user</managed-bean-name>
 <managed-bean-class>com.corejsf.UserBean</managed-bean-class>
 <managed-bean-scope>session</managed-bean-scope>
</managed-bean>

This means: Construct an object of the class com.corejsf.UserBean, give it the name
user, and keep it alive for the duration of the session—that is, for all requests that
originate from the same client.

Once the bean has been defined, it can be accessed by JSF components. For
example, this input field reads and updates the password property of the user bean:

<h:inputSecret value="#{user.password}"/>

As you can see, the JSF developer does not need to write any code to construct
and manipulate the user bean. The JSF implementation constructs the beans
according to the managed-bean elements in the configuration file.

In a JSF application, beans are commonly used for the following purposes:

• User interface components (traditional user interface beans)
• Tying together the behavior of a web form (called “backing beans”)
• Business objects whose properties are displayed on web pages
• Services such as external data sources that need to be configured when an

application is assembled

Because beans are so ubiquitous, we now turn to a review of those parts of the
JavaBeans specification that are relevant to JSF programmers.

Bean Properties

Bean classes need to follow specific programming conventions to expose
features that tools can use. We discuss these conventions in this section.

The most important features of a bean are the properties that it exposes. A
property is any attribute of a bean that has

• A name
• A type
• Methods for getting and/or setting the property value

managed-beans-VM.fm Page 39 Monday, April 2, 2007 10:46 AM

Chapter 2 ■ Managed Beans40

For example, the UserBean class of the preceding chapter has a property with
name password and type String. The methods getPassword and setPassword access the
property value.

Some programming languages, in particular Visual Basic and C#, have direct
support for properties. However, in Java, a bean is simply a class that follows
certain coding conventions.

The JavaBeans specification puts a single demand on a bean class: It must
have a public default constructor—that is, a constructor without parameters.
However, to define properties, a bean must either use a naming pattern for prop-
erty getters and setters, or it must define property descriptors. The latter
approach is quite tedious and not commonly used, and we will not discuss it
here. See Horstmann and Cornell, 2004, 2005. Core Java™ 2, vol. 2, chap. 8, for
more information.

Defining properties with naming patterns is straightforward. Consider the
following pair of methods:

public T getFoo()
public void setFoo(T newValue)

The pair corresponds to a read-write property with type T and name foo. If you
have only the first method, then the property is read-only. If you have only the
second method, then the property is write-only.

The method names and signatures must match the pattern precisely. The
method name must start with get or set. A get method must have no parame-
ters. A set method must have one parameter and no return value. A bean class
can have other methods, but the methods do not yield bean properties.

Note that the name of the property is the “decapitalized” form of the part of the
method name that follows the get or set prefix. For example, getFoo gives rise to
a property named foo, with the first letter turned into lower case. However, if
the first two letters after the prefix are upper case, then the first letter stays
unchanged. For example, the method name getURL defines a property URL and
not uRL.

For properties of type boolean, you have a choice of prefixes for the method that
reads the property. Both

public boolean isConnected()

and

public boolean getConnected()

are valid names for the reader of the connected property.

managed-beans-VM.fm Page 40 Monday, April 2, 2007 10:46 AM

Definition of a Bean 41

NOTE: The JavaBeans specification also defines indexed properties, speci-
fied by method sets such as the following:

public T[] getFoo()
public T getFoo(int index)
public void setFoo(T[] newArray)
public void setFoo(int index, T newValue)

However, JSF provides no support for accessing the indexed values.

The JavaBeans specification is silent on the behavior of the getter and setter
methods. In many situations, these methods simply manipulate an instance
field. But they may equally well carry out more sophisticated operations, such
as database lookups, data conversion, validation, and so on.

A bean class may have other methods beyond property getters and setters. Of
course, those methods do not give rise to bean properties.

Value Expressions

Many JSF user interface components have an attribute value that lets you spec-
ify either a value or a binding to a value that is obtained from a bean property.
For example, you can specify a direct value:

<h:outputText value="Hello, World!"/>

Or you can specify a value expression:

<h:outputText value="#{user.name}"/>

In most situations, a value expression such as #{user.name} describes a property.
Note that the expression can be used both for reading and writing when it is
used in an input component, such as

<h:inputText value="#{user.name}"/>

The property getter is invoked when the component is rendered. The property
setter is invoked when the user response is processed.

We will discuss the syntax of value expressions in detail under “The Syntax of
Value Expressions” on page 64.

NOTE: JSF value expressions are related to the expression language used
in JSP. Those expressions are delimited by ${...} instead of #{...}. As of
JSF 1.2 and JSP 2.1, the syntax of both expression languages has been
unified. (See “The Syntax of Value Expressions” on page 64 for a complete
description of the syntax.)

managed-beans-VM.fm Page 41 Monday, April 2, 2007 10:46 AM

Chapter 2 ■ Managed Beans42

The ${...} delimiter denotes immediate evaluation of expressions, at the
time that the application server processes the page. The #{...} delimiter
denotes deferred evaluation. With deferred evaluation, the application
server retains the expression and evaluates it whenever a value is needed.

As a rule of thumb, you always use deferred expressions for JSF component
properties, and you use immediate expressions in plain JSP or JSTL
(JavaServer Pages Standard Template Library) constructs. (These con-
structs are rarely needed in JSF pages.)

Message Bundles
When you implement a web application, it is a good idea to collect all message
strings in a central location. This process makes it easier to keep messages consis-
tent and, crucially, makes it easier to localize your application for other locales.
In this section, we show you how JSF makes it simple to organize messages. In
the section “A Sample Application” on page 46, we put managed beans and
message bundles to work.

You collect your message strings in a file in the time-honored properties format:

guessNext=Guess the next number in the sequence!
answer=Your answer:

NOTE: Look into the API documentation of the load method of the
java.util.Properties class for a precise description of the file format.

Save the file together with your classes—for example, insrc/java/com/corejsf/
messages.properties. You can choose any directory path and file name, but you
must use the extension .properties.

You can declare the message bundle in two ways. The simplest way is to
include the following elements in your faces-config.xml file:

<application>
 <resource-bundle>
 <base-name>com.corejsf.messages</base-name>
 <var>msgs</var>
 </resource-bundle>
</application>

Alternatively, you can add the f:loadBundle element to each JSF page that needs
access to the bundle, like this:

<f:loadBundle basename="com.corejsf.messages" var="msgs"/>

managed-beans-VM.fm Page 42 Monday, April 2, 2007 10:46 AM

Message Bundles 43

In either case, the messages in the bundle are accessible through a map variable
with the name msgs. (The base name com.corejsf.messages looks like a class name,
and indeed the properties file is loaded by the class loader.)

You can now use value expressions to access the message strings:

<h:outputText value="#{msgs.guessNext}"/>

That is all there is to it! When you are ready to localize your application for
another locale, you simply supply localized bundle files.

NOTE: The resource-bundle element is more efficient than the f:loadBundle
action since the bundle can be created once for the entire application. How-
ever, it is a JSF 1.2 feature. If you want your application to be compatible
with JSF 1.1, you must use f:loadBundle.

When you localize a bundle file, you need to add a locale suffix to the file
name: an underscore followed by the lower case, two-letter ISO-639 language
code. For example, German strings would be in com/corejsf/messages_de.properties.

NOTE: You can find a listing of all two- and three-letter ISO-639 language
codes at http://www.loc.gov/standards/iso639-2/.

As part of the internationalization support in Java, the bundle that matches the
current locale is automatically loaded. The default bundle without a locale pre-
fix is used as a fallback when the appropriate localized bundle is not available.
See Horstmann and Cornell, 2004, 2005. Core Java™ 2, vol. 2, chap. 10, for a
detailed description of Java internationalization.

NOTE: When you prepare translations, keep one oddity in mind: Message
bundle files are not encoded in UTF-8. Instead, Unicode characters beyond
127 are encoded as \uxxxx escape sequences. The Java SDK utility
native2ascii can create these files.

You can have multiple bundles for a particular locale. For example, you may
want to have separate bundles for commonly used error messages.

managed-beans-VM.fm Page 43 Monday, April 2, 2007 10:46 AM

Chapter 2 ■ Managed Beans44

Messages with Variable Parts

Often, messages have variable parts that need to be filled. For example, sup-
pose we want to display the sentence “You have n points.”, where n is a value
that is retrieved from a bean. Make a resource string with a placeholder:

currentScore=Your current score is {0}.

Placeholders are numbered {0}, {1}, {2}, and so on. In your JSF page, use the
h:outputFormat tag and supply the values for the placeholders as f:param child
elements, like this:

<h:outputFormat value="#{msgs.currentScore}">
 <f:param value="#{quiz.score}"/>
</h:outputFormat>

The h:outputFormat tag uses the MessageFormat class from the standard library to
format the message string. That class has several features for locale-aware
formatting.

You can format numbers as currency amounts by adding a suffix number,currency
to the placeholder, like this:

currentTotal=Your current total is {0,number,currency}.

In the United States, a value of 1023.95 would be formatted as $1,023.95. The
same value would be displayed as E1.023,95 in Germany, using the local
currency symbol and decimal separator convention.

The choice format lets you format a number in different ways, such as “zero
points”, “one point”, “2 points”, “3 points”, and so on. Here is the format string
that achieves this effect:

currentScore=Your current score is {0,choice,0#zero points|1#one point|2#{0} points}.

There are three cases: 0, 1, and � 2. Each case defines a separate message string.

Note that the 0 placeholder appears twice, once to select a choice, and again in
the third choice, to produce a result such as “3 points”.

Listings 2–5 and 2–6 on page 53 illustrate the choice format in our sample
application. The English locale does not require a choice for the message,
“Your score is . . . ”. However, in German, this is expressed as “Sie haben . . .
punkte” (You have . . . points). Now the choice format is required to deal with
the singular form “einen punkt” (one point).

For more information on the MessageFormat class, see the API documentation or
Horstmann and Cornell, 2004, 2005. Core Java™ 2, vol. 2, chap. 10.

managed-beans-VM.fm Page 44 Monday, April 2, 2007 10:46 AM

Message Bundles 45

Setting the Application Locale

Once you have prepared your message bundles, you need to decide how to set
the locale of your application. You have three choices:

1. You can let the browser choose the locale. Set the default and supported
locales in WEB-INF/faces-config.xml (or another application configuration
resource):

<faces-config>
 <application>
 <locale-config>
 <default-locale>en</default-locale>
 <supported-locale>de</supported-locale>
 </locale-config>
 </application>
</faces-config>

When a browser connects to your application, it usually includes an
Accept-Language value in the HTTP header (see http://www.w3.org/International/
questions/qa-accept-lang-locales.html). The JSF implementation reads the
header and finds the best match among the supported locales. You can
test this feature by setting the preferred language in your browser (see
Figure 2–2).

2. You can add a locale attribute to the f:view element—for example,

<f:view locale="de">

The locale can be dynamically set:

<f:view locale="#{user.locale}"/>>

Now the locale is set to the string that the getLocale method returns. This is
useful in applications that let the user pick a preferred locale.

3. You can set the locale programatically. Call the setLocale method of the
UIViewRoot object:

UIViewRoot viewRoot = FacesContext.getCurrentInstance().getViewRoot();
viewRoot.setLocale(new Locale("de"));

See “Using Command Links” on page 125 of Chapter 4 for an example.

managed-beans-VM.fm Page 45 Monday, April 2, 2007 10:46 AM

Chapter 2 ■ Managed Beans46

Figure 2–2 Selecting the preferred language

A Sample Application

After all these rather abstract rules and regulations, it is time for a concrete
example. The application presents a series of quiz questions. Each question dis-
plays a sequence of numbers and asks the participant to guess the next number
of the sequence.

For example, Figure 2–3 asks for the next number in the sequence

3 1 4 1 5

You often find puzzles of this kind in tests that purport to measure intelligence.
To solve the puzzle, you need to find the pattern. In this case, we have the first
digits of π.

Type in the next number in the sequence (9), and the score goes up by one.

NOTE: There is a Java-compatible mnemonic for the digits of π: “Can I have a
small container of coffee?” Count the letters in each word, and you get 3 1 4 1
5 9 2 6. See http://dir.yahoo.com/Science/Mathematics/Numerical_Analysis/
Numbers/Specific_Numbers/Pi/Mnemonics/ for more elaborate memorization
aids.

managed-beans-VM.fm Page 46 Monday, April 2, 2007 10:46 AM

A Sample Application 47

Figure 2–3 The number quiz

In this example, we place the quiz questions in the QuizBean class. Of course, in a
real application, you would be more likely to store this information in a data-
base. But the purpose of the example is to demonstrate how to use beans that
have complex structure.

We start out with a ProblemBean class. A ProblemBean has two properties: solution, of
type int, and sequence, of type ArrayList (see Listing 2–1).

Listing 2–1 numberquiz/src/java/com/corejsf/ProblemBean.java

1. package com.corejsf;
2. import java.util.ArrayList;
3.

4. public class ProblemBean {
5. private ArrayList<Integer> sequence;
6. private int solution;
7.
8. public ProblemBean() {}
9.

10. public ProblemBean(int[] values, int solution) {
11. sequence = new ArrayList<Integer>();
12. for (int i = 0; i < values.length; i++)
13. sequence.add(values[i]);
14. this.solution = solution;
15. }
16.

managed-beans-VM.fm Page 47 Monday, April 2, 2007 10:46 AM

Chapter 2 ■ Managed Beans48

Next, we define a bean for the quiz with the following properties:

• problems: a write-only property to set the quiz problems
• score: a read-only property to get the current score
• current: a read-only property to get the current quiz problem
• answer: a property to get and set the answer that the user provides

The problems property is unused in this sample program—we initialize the
problem set in the QuizBean constructor. However, under “Chaining Bean Def-
initions” on page 61, you will see how to set up the problem set inside faces-
config.xml, without having to write any code.

The current property is used to display the current problem. However, the value
of the current property is a ProblemBean object, and we cannot directly display that
object in a text field. We make a second property access to get the number
sequence:

<h:outputText value="#{quiz.current.sequence}"/>

The value of the sequence property is an ArrayList. When it is displayed, it is con-
verted to a string by a call to the toString method. The result is a string of the form

[3, 1, 4, 1, 5]

Finally, we do a bit of dirty work with the answer property. We tie the answer
property to the input field:

<h:inputText value="#{quiz.answer}"/>

When the input field is displayed, the getter is called, and we define the getAnswer
method to return an empty string.

When the form is submitted, the setter is called with the value that the user
typed into the input field. We define setAnswer to check the answer, update the
score for a correct answer, and advance to the next problem.

17. // PROPERTY: sequence
18. public ArrayList<Integer> getSequence() { return sequence; }
19. public void setSequence(ArrayList<Integer> newValue) { sequence = newValue; }
20.

21. // PROPERTY: solution
22. public int getSolution() { return solution; }
23. public void setSolution(int newValue) { solution = newValue; }
24. }

Listing 2–1 numberquiz/src/java/com/corejsf/ProblemBean.java (cont.)

managed-beans-VM.fm Page 48 Monday, April 2, 2007 10:46 AM

A Sample Application 49

public void setAnswer(String newValue) {
 try {
 int answer = Integer.parseInt(newValue.trim());
 if (getCurrent().getSolution() == answer) score++;
 currentIndex = (currentIndex + 1) % problems.size();
 }
 catch (NumberFormatException ex) {
 }
}

Strictly speaking, it is a bad idea to put code into a property setter that is unre-
lated to the task of setting the property. Updating the score and advancing to
the next problem should really be contained in a handler for the button action.
However, we have not yet discussed how to react to button actions, so we use
the flexibility of the setter method to our advantage.

Another weakness of our sample application is that we have not yet covered
how to stop at the end of the quiz. Instead, we just wrap around to the begin-
ning, letting the user rack up a higher score. You will learn in the next chapter
how to do a better job. Remember—the point of this application is to show you
how to configure and use beans.

Finally, note that we use message bundles for internationalization. Try switching
your browser language to German, and the program will appear as in Figure 2–4.

This finishes our sample application. Figure 2–5 shows the directory structure.
The remaining code is in Listings 2–2 through 2–6.

Figure 2–4 Viel Spaß mit dem Zahlenquiz!

managed-beans-VM.fm Page 49 Monday, April 2, 2007 10:46 AM

Chapter 2 ■ Managed Beans50

Figure 2–5 The directory structure of the number quiz example

Listing 2–2 numberquiz/web/index.jsp

1. <html>
2. <%@ taglib uri="http://java.sun.com/jsf/html" prefix="h" %>
3. <%@ taglib uri="http://java.sun.com/jsf/core" prefix="f" %>
4.

5. <f:view>
6. <head>
7. <title><h:outputText value="#{msgs.title}"/></title>
8. </head>
9. <body>

10. <h:form>
11. <h3>
12. <h:outputText value="#{msgs.heading}"/>
13. </h3>
14. <p>
15. <h:outputFormat value="#{msgs.currentScore}">
16. <f:param value="#{quiz.score}"/>
17. </h:outputFormat>
18. </p>
19. <p>
20. <h:outputText value="#{msgs.guessNext}"/>
21. </p>
22. <p>
23. <h:outputText value="#{quiz.current.sequence}"/>
24. </p>

managed-beans-VM.fm Page 50 Monday, April 2, 2007 10:46 AM

A Sample Application 51

25. <p>
26. <h:outputText value="#{msgs.answer}"/>
27. <h:inputText value="#{quiz.answer}"/></p>
28. <p>
29. <h:commandButton value="#{msgs.next}" action="next"/>
30. </p>
31. </h:form>
32. </body>
33. </f:view>
34. </html>

Listing 2–3 numberquiz/src/java/com/corejsf/QuizBean.java

1. package com.corejsf;
2. import java.util.ArrayList;
3.

4. public class QuizBean {
5. private ArrayList<ProblemBean> problems = new ArrayList<ProblemBean>();
6. private int currentIndex;
7. private int score;
8.
9. public QuizBean() {

10. problems.add(
11. new ProblemBean(new int[] { 3, 1, 4, 1, 5 }, 9)); // pi
12. problems.add(
13. new ProblemBean(new int[] { 1, 1, 2, 3, 5 }, 8)); // fibonacci
14. problems.add(
15. new ProblemBean(new int[] { 1, 4, 9, 16, 25 }, 36)); // squares
16. problems.add(
17. new ProblemBean(new int[] { 2, 3, 5, 7, 11 }, 13)); // primes
18. problems.add(
19. new ProblemBean(new int[] { 1, 2, 4, 8, 16 }, 32)); // powers of 2
20. }
21.

22. // PROPERTY: problems
23. public void setProblems(ArrayList<ProblemBean> newValue) {
24. problems = newValue;
25. currentIndex = 0;
26. score = 0;
27. }
28.
29. // PROPERTY: score
30. public int getScore() { return score; }

Listing 2–2 numberquiz/web/index.jsp (cont.)

managed-beans-VM.fm Page 51 Monday, April 2, 2007 10:46 AM

Chapter 2 ■ Managed Beans52

31.

32. // PROPERTY: current
33. public ProblemBean getCurrent() {
34. return problems.get(currentIndex);
35. }
36.

37. // PROPERTY: answer
38. public String getAnswer() { return ""; }
39. public void setAnswer(String newValue) {
40. try {
41. int answer = Integer.parseInt(newValue.trim());
42. if (getCurrent().getSolution() == answer) score++;
43. currentIndex = (currentIndex + 1) % problems.size();
44. }
45. catch (NumberFormatException ex) {
46. }
47. }
48. }

Listing 2–4 numberquiz/web/WEB-INF/faces-config.xml

1. <?xml version="1.0"?>
2. <faces-config xmlns="http://java.sun.com/xml/ns/javaee"
3. xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
4. xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
5. http://java.sun.com/xml/ns/javaee/web-facesconfig_1_2.xsd"
6. version="1.2">
7. <application>
8. <locale-config>
9. <default-locale>en</default-locale>

10. <supported-locale>de</supported-locale>
11. </locale-config>
12. </application>
13.

14. <navigation-rule>
15. <from-view-id>/index.jsp</from-view-id>
16. <navigation-case>
17. <from-outcome>next</from-outcome>
18. <to-view-id>/index.jsp</to-view-id>
19. </navigation-case>
20. </navigation-rule>
21.

Listing 2–3 numberquiz/src/java/com/corejsf/QuizBean.java (cont.)

managed-beans-VM.fm Page 52 Monday, April 2, 2007 10:46 AM

Backing Beans 53

Backing Beans

Sometimes it is convenient to design a bean that contains some or all component
objects of a web form. Such a bean is called a backing bean for the web form.

For example, we can define a backing bean for the quiz form by adding proper-
ties for the form component:

public class QuizFormBean {
 private UIOutput scoreComponent;
 private UIInput answerComponent;

22. <managed-bean>
23. <managed-bean-name>quiz</managed-bean-name>
24. <managed-bean-class>com.corejsf.QuizBean</managed-bean-class>
25. <managed-bean-scope>session</managed-bean-scope>
26. </managed-bean>
27.

28. <application>
29. <resource-bundle>
30. <base-name>com.corejsf.messages</base-name>
31. <var>msgs</var>
32. </resource-bundle>
33. </application>
34. </faces-config>

Listing 2–5 numberquiz/src/java/com/corejsf/messages.properties

1. title=NumberQuiz
2. heading=Have fun with NumberQuiz!
3. currentScore=Your current score is {0}.
4. guessNext=Guess the next number in the sequence!
5. answer=Your answer:
6. next=Next

Listing 2–6 numberquiz/src/java/com/corejsf/messsages_de.properties

1. title=Zahlenquiz
2. heading=Viel Spa\u00df mit dem Zahlenquiz!
3. currentScore=Sie haben {0,choice,0#0 Punkte|1#einen Punkt|2#{0} Punkte}.
4. guessNext=Raten Sie die n\u00e4chste Zahl in der Folge!
5. answer=Ihre Antwort:
6. next=Weiter

Listing 2–4 numberquiz/web/WEB-INF/faces-config.xml (cont.)

managed-beans-VM.fm Page 53 Monday, April 2, 2007 10:46 AM

Chapter 2 ■ Managed Beans54

 // PROPERTY: scoreComponent
 public UIOutput getScoreComponent() { return scoreComponent; }
 public void setScoreComponent(UIOutput newValue) { scoreComponent = newValue; }

 // PROPERTY: answerComponent
 public UIInput getAnswerComponent() { return answerComponent; }
 public void setAnswerComponent(UIInput newValue) { answerComponent = newValue; }
 ...
}

Output components belong to the UIOutput class and input components belong
to the UIInput class. We discuss these classes in greater detail in “The Custom
Component Developer’s Toolbox” on page 360 of Chapter 9.

Why would you want such a bean? As we show in “Validating Relationships
Between Multiple Components” on page 260 of Chapter 6, it is sometimes
necessary for validators and event handlers to have access to the actual compo-
nents on a form. Moreover, visual JSF development environments generally
use backing beans (called page beans in Java Studio Creator because a bean is
added for every page). These environments automatically generate the prop-
erty getters and setters for all components that are dragged onto a form.

When you use a backing bean, you need to wire up the components on the
form to those on the bean. You use the binding attribute for this purpose:

<h:outputText binding="#{quizForm.scoreComponent}"/>

When the component tree for the form is built, the getScoreComponent method of
the backing bean is called, but it returns null. As a result, an output component
is constructed and installed into the backing bean with a call to setScoreComponent.

Backing beans have their uses, but they can also be abused. You should not mix
form components and business data in the same bean. If you use backing beans
for your presentation data, use a different set of beans for business objects.

Bean Scopes

For the convenience of the web application programmer, a servlet container pro-
vides separate scopes, each of which manages a table of name/value bindings.

These scopes typically hold beans and other objects that need to be available in
different components of a web application.

Session Scope

Recall that the HTTP protocol is stateless. The browser sends a request to the
server, the server returns a response, and then neither the browser nor the

managed-beans-VM.fm Page 54 Monday, April 2, 2007 10:46 AM

Bean Scopes 55

server has any obligation to keep any memory of the transaction. This simple
arrangement works well for retrieving basic information, but it is unsatisfac-
tory for server-side applications. For example, in a shopping application, you
want the server to remember the contents of the shopping cart.

For that reason, servlet containers augment the HTTP protocol to keep track of
a session—that is, repeated connections by the same client. There are various
methods for session tracking. The simplest method uses cookies: name/value
pairs that a server sends to a client, hoping to have them returned in subse-
quent requests (see Figure 2–6).

Figure 2–6 The cookie sent by a JSF application

As long as the client does not deactivate cookies, the server receives a session
identifier with each subsequent request.

Application servers use fallback strategies, such as URL rewriting, for dealing
with those clients that do not return cookies. URL rewriting adds a session
identifier to a URL, which looks somewhat like this:

http://corejsf.com/login/index.jsp;jsessionid=b55cd6...d8e

NOTE: To see this behavior, tell your browser to reject cookies from the
localhost, then restart the web application and submit a page. The next
page will have a jsessionid attribute.

managed-beans-VM.fm Page 55 Monday, April 2, 2007 10:46 AM

Chapter 2 ■ Managed Beans56

Session tracking with cookies is completely transparent to the web developer,
and the standard JSF tags automatically perform URL rewriting if a client does
not use cookies.

The session scope persists from the time that a session is established until session
termination. A session terminates if the web application invokes the invalidate
method on the HttpSession object, or if it times out.

Web applications typically place most of their beans into session scope.

For example, a UserBean can contain information about users that is accessible
throughout the entire session. A ShoppingCartBean can be filled up gradually
during the requests that make up a session.

Application Scope

The application scope persists for the entire duration of the web application. That
scope is shared among all requests and all sessions.

You place managed beans into the application scope if a single bean should be
shared among all instances of a web application. The bean is constructed when
it is first requested by any instance of the application, and it stays alive until
the web application is removed from the application server.

Request Scope

The request scope is short-lived. It starts when an HTTP request is submitted
and ends when the response is sent back to the client.

If you place a managed bean into request scope, a new instance is created with
each request. Not only is this is potentially expensive, it is also not appropriate
if you want your data to persist beyond a request. You would place an object
into request scope only if you wanted to forward it to another processing phase
inside the current request.

For example, the f:loadBundle tag places the bundle variable in request scope.
The variable is needed only during the Render Response phase in the same
request.

CAUTION: Only request scope beans are single-threaded and, therefore,
inherently threadsafe. Perhaps surprisingly, session beans are not single-
threaded. For example, a user can simultaneously submit responses from
multiple browser windows. Each response is processed by a separate
request thread. If you need thread safety in your session beans, you should
provide locking mechanisms.

managed-beans-VM.fm Page 56 Monday, April 2, 2007 10:46 AM

Configuring Beans 57

Life Cycle Annotations

Starting with JSF 1.2, you can specify managed bean methods that are automat-
ically called just after the bean has been constructed and just before the bean
goes out of scope. This is particularly convenient for beans that establish con-
nections to external resources such as databases.

Annotate the methods with @PostConstruct or @PreDestroy, like this:

public class MyBean {
 @PostConstruct
 public void initialize() {
 // initialization code
 }
 @PreDestroy
 public void shutdown() {
 // shutdown code
 }

 // other bean methods
}

These methods will be automatically called, provided the web application is
deployed in a container that supports the annotations of JSR (Java Specification
Request) 250 (see http://www.jcp.org/en/jsr/detail?id=250). In particular, Java EE 5-
compliant application servers such as GlassFish support these annotations. It is
expected that standalone containers such as Tomcat will also provide support
in the future.

Configuring Beans

This section describes how you can configure a bean in a configuration file. The
details are rather technical. You may want to have a glance at this section and
return to it when you need to configure beans with complex properties.

The most commonly used configuration file is WEB-INF/faces-config.xml. However,
you can also place configuration information inside the following locations:

• Files named META-INF/faces-config.xml inside any JAR files loaded by the
external context’s class loader. (You use this mechanism if you deliver
reusable components in a JAR file.)

• Files listed in the javax.faces.CONFIG_FILES initialization parameter inside
WEB-INF/web.xml. For example,
<web-app>
 <context-param>
 <param-name>javax.faces.CONFIG_FILES</param-name>

managed-beans-VM.fm Page 57 Monday, April 2, 2007 10:46 AM

Chapter 2 ■ Managed Beans58

 <param-value>WEB-INF/navigation.xml,WEB-INF/beans.xml</param-value>
 </context-param>
 ...
</web-app>

(This mechanism is attractive for builder tools because it separates navi-
gation, beans, etc.)

For simplicity, we use WEB-INF/faces-config.xml in this chapter.

A bean is defined with a managed-bean element inside the top-level faces-config
element. Minimally, you must specify the name, class, and scope of the bean.

<faces-config>
 <managed-bean>
 <managed-bean-name>user</managed-bean-name>
 <managed-bean-class>com.corejsf.UserBean</managed-bean-class>
 <managed-bean-scope>session</managed-bean-scope>
 </managed-bean>
</faces-config>

The scope can be request, session, application, or none. The none scope denotes an
object that is not kept in one of the three scope maps. You use objects with
scope none as building blocks when wiring up complex beans. You will see an
example in the section “Chaining Bean Definitions” on page 61.

Setting Property Values

We start with a simple example. Here we customize a UserBean instance:

<managed-bean>
 <managed-bean-name>user</managed-bean-name>
 <managed-bean-class>com.corejsf.UserBean</managed-bean-class>
 <managed-bean-scope>session</managed-bean-scope>
 <managed-property>
 <property-name>name</property-name>
 <value>me</value>
 </managed-property>
 <managed-property>
 <property-name>password</property-name>
 <value>secret</value>
 </managed-property>
</managed-bean>

When the user bean is first looked up, it is constructed with the UserBean()
default constructor. Then the setName and setPassword methods are executed.

managed-beans-VM.fm Page 58 Monday, April 2, 2007 10:46 AM

Configuring Beans 59

To initialize a property with null, use a null-value element. For example,

<managed-property>
 <property-name>password</property-name>
 <null-value/>
</managed-property>

Initializing Lists and Maps

A special syntax initializes values that are of type List or Map. Here is an example
of a list:

<list-entries>
 <value-class>java.lang.Integer</value.class>
 <value>3</value>
 <value>1</value>
 <value>4</value>
 <value>1</value>
 <value>5</value>
</list-entries>

Here we use the java.lang.Integer wrapper type since a List cannot hold values of
primitive type.

The list can contain a mixture of value and null-value elements. The value-class is
optional. If it is omitted, a list of java.lang.String objects is produced.

A map is more complex. You specify optional key-class and value-class elements
(again, with a default of java.lang.String). Then you provide a sequence of map-
entry elements, each of which has a key element, followed by a value or null-value
element.

Here is an example:

<map-entries>
 <key-class>java.lang.Integer</key-class>
 <map-entry>
 <key>1</key>
 <value>George Washington</value>
 </map-entry>
 <map-entry>
 <key>3</key>
 <value>Thomas Jefferson</value>
 </map-entry>
 <map-entry>
 <key>16</key>
 <value>Abraham Lincoln</value>
 </map-entry>
 <map-entry>

managed-beans-VM.fm Page 59 Monday, April 2, 2007 10:46 AM

Chapter 2 ■ Managed Beans60

 <key>26</key>
 <value>Theodore Roosevelt</value>
 </map-entry>
</map-entries>

You can use list-entries and map-entries elements to initialize either a managed-bean
or a managed-property, provided that the bean or property type is a List or Map.

Figure 2–7 shows a syntax diagram for the managed-bean element and all of its child
elements. Follow the arrows to see which constructs are legal inside a managed-
bean element. For example, the second graph tells you that a managed-property ele-
ment starts with zero or more description elements, followed by zero or more
display-name elements, zero or more icons, then a mandatory property-name, an
optional property-class, and exactly one of the elements value, null-value, map-
entries, or list-entries.

Figure 2–7 Syntax diagram for managed-bean elements

managed-beans-VM.fm Page 60 Monday, April 2, 2007 10:46 AM

Configuring Beans 61

Chaining Bean Definitions

You can achieve more complex arrangements by using value expressions inside
the value element to chain beans together. Consider the quiz bean in the number-
quiz application.

The quiz contains a collection of problems, represented as the write-only
problems property. You can configure it with the following instructions:

<managed-bean>
 <managed-bean-name>quiz</managed-bean-name>
 <managed-bean-class>com.corejsf.QuizBean</managed-bean-class>
 <managed-bean-scope>session</managed-bean-scope>
 <managed-property>
 <property-name>problems</property-name>
 <list-entries>
 <value-class>com.corejsf.ProblemBean</value-class>
 <value>#{problem1}</value>
 <value>#{problem2}</value>
 <value>#{problem3}</value>
 <value>#{problem4}</value>
 <value>#{problem5}</value>
 </list-entries>
 </managed-property>
</managed-bean>

Of course, now we must define beans with names problem1 through problem5, like
this:

<managed-bean>
 <managed-bean-name>problem1</managed-bean-name>
 <managed-bean-class>
 com.corejsf.ProblemBean
 </managed-bean-class>
 <managed-bean-scope>none</managed-bean-scope>
 <managed-property>
 <property-name>sequence</property-name>
 <list-entries>
 <value-class>java.lang.Integer</value-class>
 <value>3</value>
 <value>1</value>
 <value>4</value>
 <value>1</value>
 <value>5</value>
 </list-entries>
 </managed-property>

managed-beans-VM.fm Page 61 Monday, April 2, 2007 10:46 AM

Chapter 2 ■ Managed Beans62

 <managed-property>
 <property-name>solution</property-name>
 <value>9</value>
 </managed-property>
</managed-bean>

When the quiz bean is requested, then the creation of the beans problem1 through
problem5 is triggered automatically. You need not worry about the order in which
you specify managed beans.

Note that the problem beans have scope none since they are never requested
from a JSF page but are instantiated when the quiz bean is requested.

When you wire beans together, make sure that their scopes are compatible.
Table 2–1 lists the permissible combinations.

String Conversions

You specify property values and elements of lists or maps with a value element
that contains a string. The enclosed string needs to be converted to the type of
the property or element. For primitive types, this conversion is straightfor-
ward. For example, you can specify a boolean value with the string true or false.

Starting with JSF 1.2, values of enumerated types are supported as well. The
conversion is performed by calling Enum.valueOf(propertyClass, valueText).

For other property types, the JSF implementation attempts to locate a matching
PropertyEditor. If a property editor exists, its setAsText method is invoked to
convert strings to property values. Property editors are heavily used for client-
side beans, to convert between property values and a textual or graphical rep-
resentation that can be displayed in a property sheet (see Figure 2–8).

Defining a property editor is somewhat involved, and we refer the interested
reader to Horstmann and Cornell, 2004, 2005. Core Java™ 2, vol. 2, chap. 8.

Table 2–1 Compatible Bean Scopes

When defining a bean of this scope you can use beans of these scopes

none none

application none, application

session none, application, session

request none, application, session, request

managed-beans-VM.fm Page 62 Monday, April 2, 2007 10:46 AM

Configuring Beans 63

Figure 2–8 A property sheet in a GUI builder

Note that the rules are fairly restrictive. For example, if you have a property of
type URL, you cannot simply specify the URL as a string, even though there is a
constructor URL(String). You would need to supply a property editor for the URL
type or reimplement the property type as String.

Table 2–2 summarizes these conversion rules. They are identical to the rules for
the jsp:setProperty action of the JSP specification.

Table 2–2 String Conversions

Target Type Conversion

int, byte, short, long, float, double, or
the corresponding wrapper type

The valueOf method of the wrapper type, or
0 if the string is empty.

boolean or Boolean The result of Boolean.valueOf, or false if the
string is empty.

char or Character The first character of the string, or (char) 0
if the string is empty.

String or Object A copy of the string; new String("") if the
string is empty.

bean property A type that calls the setAsText method of the
property editor if it exists. If the property
editor does not exist or it throws an excep-
tion, the property is set to null if the string
is empty. Otherwise, an error occurs.

managed-beans-VM.fm Page 63 Monday, April 2, 2007 10:46 AM

Chapter 2 ■ Managed Beans64

The Syntax of Value Expressions

In this section, we discuss the syntax for value expressions in gruesome detail.
This section is intended for reference. Feel free to skip it at first reading.

We start with an expression of the form a.b. For now, we will assume that we
already know the object to which a refers. If a is an array, a list, or a map, then
special rules apply (see “Using Brackets” below). If a is any other object, then b
must be the name of a property of a. The exact meaning of a.b depends on
whether the expression is used in rvalue mode or lvalue mode.

This terminology is used in the theory of programming languages to denote
that an expression on the right-hand side of an assignment is treated differently
from an expression on the left-hand side.

Consider the assignment

left = right;

A compiler generates different code for the left and right expressions. The right
expression is evaluated in rvalue mode and yields a value. The left expression
is evaluated in lvalue mode and stores a value in a location.

The same phenomenon happens when you use a value expression in a user
interface component:

<h:inputText value="#{user.name}"/>

When the text field is rendered, the expression user.name is evaluated in rvalue
mode, and the getName method is called. During decoding, the same expression
is evaluated in lvalue mode and the setName method is called.

In general, the expression a.b in rvalue mode is evaluated by calling the prop-
erty getter, whereas a.b in lvalue mode calls the property setter.

Using Brackets

Just as in JavaScript, you can use brackets instead of the dot notation. That is,
the following three expressions all have the same meaning:

a.b
a["b"]
a['b']

For example, user.password, user["password"], and user['password'] are equivalent
expressions.

managed-beans-VM.fm Page 64 Monday, April 2, 2007 10:46 AM

The Syntax of Value Expressions 65

Why would anyone write user["password"] when user.password is much easier to
type? There are a number of reasons:

• When you access an array or map, the [] notation is more intuitive.
• You can use the [] notation with strings that contain periods or dashes—

for example, msgs["error.password"].

• The [] notation allows you to dynamically compute a property:
a[b.propname].

TIP: Use single quotes in value expressions if you delimit attributes with
double quotes: value="#{user['password']}". Alternatively, you can switch
single and double quotes: value='#{user["password"]}'.

Map and List Expressions

The value expression language goes beyond bean property access. For exam-
ple, let m be an object of any class that implements the Map interface. Then m["key"]
(or the equivalent m.key) is a binding to the associated value. In rvalue mode,
the value

m.get("key")

is fetched. In lvalue mode, the statement

m.put("key", right);

is executed. Here, right is the right-hand side value that is assigned to m.key.

You can also access a value of any object of a class that implements the List
interface (such as an ArrayList). You specify an integer index for the list position.
For example, a[i] (or, if you prefer, a.i) binds the ith element of the list a. Here i
can be an integer, or a string that can be converted to an integer. The same rule
applies for array types. As always, index values start at zero.

Table 2–3 summarizes these evaluation rules.

Table 2–3 Evaluating the Value Expression a.b

Type of a Type of b lvalue Mode rvalue Mode

null any error null

any null error null

Map any a.put(b, right) a.get(b)

managed-beans-VM.fm Page 65 Monday, April 2, 2007 10:46 AM

Chapter 2 ■ Managed Beans66

CAUTION: Unfortunately, value expressions do not work for indexed proper-
ties. If p is an indexed property of a bean b, and i is an integer, then b.p[i]
does not access the ith value of the property. It is simply a syntax error. This
deficiency is inherited from the JSP expression language.

Resolving the Initial Term

Now you know how an expression of the form a.b is resolved. The rules can be
applied repetitively to expressions such as a.b.c.d (or, of course, a['b'].c["d"]).
We still need to discuss the meaning of the initial term a.

In the examples you have seen so far, the initial term referred to a bean that was
configured in the faces-config.xml file or to a message bundle map. Those are
indeed the most common situations. But it is also possible to specify other
names.

There are a number of predefined objects. Table 2–4 shows the complete list.
For example,

header['User-Agent']

is the value of the User-Agent parameter of the HTTP request that identifies the
user’s browser.

If the initial term is not one of the predefined objects, the JSF implementation
looks for it in the request, session, and application scopes, in that order. Those
scopes are map objects that are managed by the servlet container. For example,
when you define a managed bean, its name and value are added to the appro-
priate scope map.

List convertible to int a.set(b, right) a.get(b)

array convertible to int a[b] = right a[b]

bean any call setter of
property with
name b.toString()

call getter of
property with
name b.toString()

Table 2–3 Evaluating the Value Expression a.b (cont.)

Type of a Type of b lvalue Mode rvalue Mode

managed-beans-VM.fm Page 66 Monday, April 2, 2007 10:46 AM

The Syntax of Value Expressions 67

Finally, if the name is still not found, it is passed to the VariableResolver of the JSF
application. The default variable resolver looks up managed-bean elements in a
configuration resource, typically the faces-config.xml file.

Consider, for example, the expression

#{user.password}

The term user is not one of the predefined objects. When it is encountered for the
first time, it is not an attribute name in request, session, or application scope.

Therefore, the variable resolver processes the faces-config.xml entry:

<managed-bean>
 <managed-bean-name>user</managed-bean-name>
 <managed-bean-class>com.corejsf.UserBean</managed-bean-class>
 <managed-bean-scope>session</managed-bean-scope>
</managed-bean>

Table 2–4 Predefined Objects in the Value Expression Language

Variable Name Meaning

header A Map of HTTP header parameters, containing only the first
value for each name.

headerValues A Map of HTTP header parameters, yielding a String[]array of
all values for a given name.

param A Map of HTTP request parameters, containing only the first
value for each name.

paramValues A Map of HTTP request parameters, yielding a String[]array of
all values for a given name.

cookie A Map of the cookie names and values of the current request.

initParam A Map of the initialization parameters of this web application.
Initialization parameters are discussed in Chapter 10.

requestScope A Map of all request scope attributes.

sessionScope A Map of all session scope attributes.

applicationScope A Map of all application scope attributes.

facesContext The FacesContext instance of this request. This class is dis-
cussed in Chapter 6.

view The UIViewRoot instance of this request. This class is discussed
in Chapter 7.

managed-beans-VM.fm Page 67 Monday, April 2, 2007 10:46 AM

Chapter 2 ■ Managed Beans68

The variable resolver calls the default constructor of the class com.corejsf.User-
Bean. Next, it adds an association to the sessionScope map. Finally, it returns the
object as the result of the lookup.

When the term user needs to be resolved again in the same session, it is located
in the session scope.

Composite Expressions

You can use a limited set of operators inside value expressions:

• Arithmetic operators + - * / %. The last two operators have alphabetic
variants div and mod.

• Relational operators < <= > >= == != and their alphabetic variants lt le gt ge
eq ne. The first four variants are required for XML safety.

• Logical operators && || ! and their alphabetic variants and or not. The first
variant is required for XML safety.

• The empty operator. The expression empty a is true if a is null, an array or
String of length 0, or a Collection or Map of size 0.

• The ternary ?: selection operator.

Operator precedence follows the same rules as in Java. The empty operator has
the same precedence as the unary - and ! operators.

Generally, you do not want to do a lot of expression computation in web
pages—that would violate the separation of presentation and business logic.
However, occasionally, the presentation layer can benefit from operators. For
example, suppose you want to hide a component when the hide property of a
bean is true. To hide a component, you set its rendered attribute to false. Invert-
ing the bean value requires the ! (or not) operator:

<h:inputText rendered="#{!bean.hide}" ... />

Finally, you can concatenate plain strings and value expressions by placing
them next to each other. Consider, for example,

<h:outputText value="#{messages.greeting}, #{user.name}!"/>

The statement concatenates four strings: the string returned from #{messages.
greeting}, the string consisting of a comma and a space, the string returned from
#{user.name}, and the string consisting of an exclamation mark.

You have now seen all the rules that are applied to resolve value expressions.
Of course, in practice, most expressions are of the form #{bean.property}. Just
come back to this section when you need to tackle a more complex expression.

managed-beans-VM.fm Page 68 Monday, April 2, 2007 10:46 AM

The Syntax of Value Expressions 69

Method Expressions

A method expression denotes an object, together with a method that can be
applied to it.

 For example, here is a typical use of a method expression:

<h:commandButton action="#{user.checkPassword}"/>

We assume that user is a value of type UserBean and checkPassword is a method of
that class. The method expression is a convenient way of describing a method
invocation that needs to be carried out at some future time.

When the expression is evaluated, the method is applied to the object.

In our example, the command button component will call user.checkPassword()
and pass the returned string to the navigation handler.

Syntax rules for method expressions are similar to those of value expressions.
All but the last component are used to determine an object. The last component
must be the name of a method that can be applied to that object.

Four component attributes can take a method expression:

• action (see “Dynamic Navigation” on page 73 of Chapter 3)
• validator (see “Validating with Bean Methods” on page 259 of Chapter 6)
• valueChangeListener (“Value Change Events” on page 269 of see Chapter 7)
• actionListener (see “Action Events” on page 275 of Chapter 7)

The parameter and return types of the method depend on the context in which
the method expression is used. For example, an action must be bound to a
method with no parameters and return type String, whereas an actionListener is
bound to a method with one parameter of type ActionEvent and return type void.
The code that invokes the method expression is responsible for supplying
parameter values and processing the return value.

managed-beans-VM.fm Page 69 Monday, April 2, 2007 10:46 AM

