Sergei Katsev, Denis G. Rancourt, and Ivan L'Heureux Lake Sediment Structure and Evolution (LSSE) group

Department of Physics, University of Ottawa

dSED: Database for Sediment Early Diagenesis

User Manual

Content

Part I – Database Program Manual	2
Introduction	
Programming aspects of dSED implementation	2
Database organization	
Information structure (Tables)	4
Retrieving data (Forms)	6
Forms and filters	9
Examples	. 12
Example 1. Selecting a set of reactions used in a cited reaction-transport model	. 12
Example 2. Printing database records for a specific set of reactions	. 12
Example 3. Arranging mineral list by mineral classes.	. 14
Part II – Modeling and Geochemical Background Information	. 15

Last updated: May 3, 2004

Contacts: Sergei Katsev: <u>skatsev@physics.uottawa.ca</u> Denis G. Rancourt: <u>dgr@physics.uottawa.ca</u> Ivan L'Heureux: <u>ilheureu@physics.uottawa.ca</u>

> Department of Physics, University of Ottawa 150 Louis Pasteur Street Ottawa, Ontario K1N 6N5, Canada

Part I – Database Program Manual

Introduction

The Database for Sediment Early Diagenesis (dSED) is a collection of experimental and theoretical thermodynamic and kinetic data and bibliographic and reference information that is intended as a tool in developing models of early diagenesis in aquatic sediments. While the goals and the philosophy of the database are described in an article (S. Katsev, D.G. Rancourt, and I. L'Heureux, dSED: A database tool for modeling sediment early diagenesis.) that can be downloaded at <u>http://www.science.uottawa.ca/LSSE/dSED</u>, this document is intended to assist users in their work with the database and in learning its programming and search capabilities.

The use of dSED is in most cases simple and straightforward. A large portion of this manual deals with details of dSED implementation that are essential for its customization. Information about the basic use of the database is contained in the sections Retrieving data, Forms and filters, and Examples.

Since, in practice, at this stage, dSED is intended primarily as a collection of kinetic data of greatest use in diagenetic modeling, it may lack many reactions that describe equilibria between various solid and liquid species, as well as speciation reactions for aqueous species. The user is encouraged to seek information on such reactions in one of the programs/databases designed specifically for equilibrium thermodynamic calculations (FITEQL, PHREEQE, etc.) as well as in numerous thermodynamic calculations references. A non-exhaustive list of equilibrium reactions along with the stability constants can be found, for example, in Ref. [7] (see Part II of this manual).

Programming aspects of dSED implementation

Database organization

The dSED database is implemented in Microsoft Access[™] 2000. Some aspects of Access data organization that are important for information handling in dSED are outlined below, although an interested user is encouraged to consult that program's manual.

Microsoft Access[™] uses a 3-tier approach to information handling through the use of what are called Tables, Queries, and Forms (Figure 1). The information is stored in data Tables in a way that best corresponds to the data structure and minimizes data redundancy. Certain fields in the Tables may be connected by logical links. Search tools called Queries are used as programmable search engines to locate the necessary data in the Tables and to retrieve them according to specified rules. Finally, Forms serve as an interface in which the information is presented in a format convenient for the user.

In dSED, all information can be viewed or entered through the corresponding Forms (Figure 2). For convenience, the Forms are combined in several groups, according to their

functionality, such as forms that display reactions for a particular chemical species or the ones that display reactions of a particular type, e.g. precipitation reactions. The groups of forms are shown in the lower left corner in Figure 2.

An advanced user may add the required functionality by modifying the existing Forms and the corresponding Queries or by writing additional programming routines. The builtin Access filters can also be used for fast information selection, as discussed below.

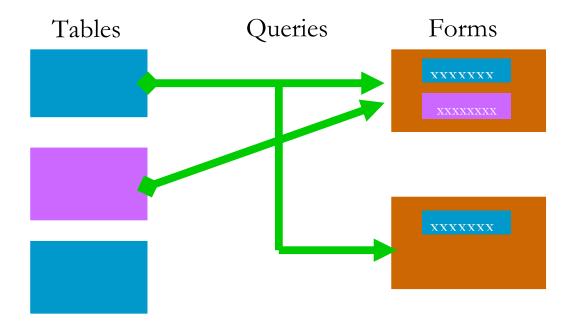


Figure 1. General database organization in MS Access.

Microsoft Access		
<u>File E</u> dit <u>V</u> iew <u>I</u> nsert	<u>T</u> ools <u>W</u> indow <u>H</u> elp	
🗈 🗃 🖬 🖏 🎒 🗟 🖤	ዮ እ 🖻 🛍 🗠 - 💹 - 🌆 -	🖄 🚥 🖆 🖷 🕫 🗸 🕄 🗸
ReactionsDatabase : D	atabase (Access 2000 file format	
简Open 🔍 Design 🏣 New		
Objects	Create form in Design view	Reactions Biocatalyzed
III Tables	Create form by using wizard	🔠 Reactions CH4
👜 Queries	Abbreviations and symbols	Reactions Fe (all species)
Forms	Acid-Base Reactions	Reactions Fe(OH)3
	EB Adsorption	🖽 Reactions FeS
Reports	Adsorption - Substrates	🖽 Reactions FeS2
💼 Pages	All Reactions	🖽 Reactions H25
🕱 Macros	All reactions copy	🖽 Reactions Inorganic
	Electron Half Reaction List	🖽 Reactions Mn (all species)
ses modules	Electron Half Reactions Display	🕮 Reactions MnO2
Groups	Electron Half Reactions Entry	🖼 Reactions N (all species)
😹 Favorites	🖽 FeS2 Query1	🕮 Reactions NH4
🛞 Reactions by species	🖼 FeS2 Selected	🖼 Reactions NO3
	🖼 General Comments	🖼 Reactions OM
Reactions by type	🖼 Literature	🖼 Reactions P (all species)
😹 Reference data	💼 Mineral Classes	🖽 Reactions Photochemical
📓 Main Forms	🗄 Minerals	🕮 Reactions Precipitation/Dissolution
	🕄 New Reaction Entry Form	🖽 Reactions Redox
	😨 Reactions Al (all species)	🖽 Reactions 504
	🕄 Reactions As (all species)	🖽 Transport processes

Figure 2 dSED main window showing available Microsoft Access Forms.

Information structure (Tables)

The database uses a reactions-centered approach to organizing the information, i.e. the main entries in the database records are individual chemical reactions or, generally speaking, physical, biochemical, or geochemical processes that can be represented as a reaction. Each reaction has its unique ID number that can be used for referencing. The information about reactions is stored in the Reactions Table and can be retrieved in its most complete form through the All Reactions Form.

In addition to the main dataset that characterizes particular reactions, dSED contains additional information that is stored in separate Tables and can be retrieved through the corresponding Forms. This information includes such data as adsorption parameters for different species on various substrates, half-reaction representation for redox reactions,

transport processes in sediments, list of minerals present in sediments, bibliographic references, and other information.

Below is the description of dSED data Tables. This information is needed if new functionality is to be added to the database through programming Queries and Forms. A user interested in only retrieving the information can skip to the next section. In the descriptions below, some Tables are described as auxiliary, which means that their content is used in other tables, for example, as a look-up list in a drop-down box.

dSED Table	Description	Relationships
Abbreviations and	A list of abbreviations and symbols used in	
symbols	dSED is provided as a reference.	
Acid-base reactions	A list of common acid-base reactions is	
	provided as a reference. Equilibrium constants	
	are given.	
Adsorption	Data on adsorption of various aqueous	Uses
_	dissolved species on common solid substrate	Adsorption-
	surfaces is provided. The list of possible	substrates table
	aqueous species for a drop-down box is	as a data
	specified as an internal list inside the Table	source
	while the list of substrates is taken from the	
	Adsorption-substrates table.	
Adsorption-	Solid phase surfaces and their properties with	Used in
substrates	respect to sorption are listed as well as typical	Adsorption
	sorption properties of dead or alive organic	table
	matter. This table is an auxiliary data source for	
	the Adsorption table.	
General comments	General comments about the database and its	
	implementation. They are intended to clarify	
	conventions, definitions, etc.	
Half-reaction list	A list of redox electron half-reactions and their	Used by the
	equilibrium constants is provided. It is used as	Half Reactions
	an auxiliary data source for the Half Reactions	table.
	table.	
Half reactions	Electron half-reaction representations for the	Linked to the
	redox reactions in the main (Reactions) table	ID field in
	are stored in this table. The list of half-reactions	Reactions
	for the drop-down box is taken from the Half-	table.
	Reaction List table. The reactions in the main	Uses Half-
	table are referenced by their IDs. Those IDs are	Reaction List
	used as a primary key for the table. A similar	as data source.
.	table is planned for proton half-reactions.	
Literature	Bibliographic information on cited references.	.
LUT Adsorption-	This is an auxiliary look-up table that matches	Linked to
Literature	sorption processes with the corresponding	Adsorption and
	bibliographic references. It contains sorption	Literature

	process IDs and literature reference IDs.	tables
LUT Rate-Literature	This is an auxiliary look-up table that matches	Linked to
	reactions with bibliographic references for	Reactions and
	reaction rates. It contains reaction IDs and	Literature
	literature reference IDs.	tables
LUT Reaction-	This is an auxiliary look-up table that matches	Linked to
Literature	reactions with the corresponding bibliographic	Reactions and
	references. It contains reaction IDs and	Literature
	literature reference IDs.	tables
LUT Reaction-	This is an auxiliary look-up table that matches	Linked to
Model	reactions with the corresponding diagenetic	Reactions and
1110 001	models in which those reactions were used. The	Models tables
	table contains reaction IDs and model IDs.	
LUT Substrate-	This is an auxiliary look-up table that matches	Linked to
Literature	adsorption substrates with the corresponding	Adsorption-
	bibliographic references. It contains substrate	substrates and
	IDs and literature reference IDs.	Literature
		tables
LUT Transport-	This is an auxiliary look-up table that matches	Linked to
Literature	transport processes with the corresponding	Transport and
	bibliographic references. It contains transport	Literature
	process IDs and literature reference IDs.	tables
Mineral classes	A list of mineral classes that correspond to	Used in
	standard mineral classification. This table is	Minerals table
	used as an auxiliary data source for the Minerals	as a data
	table.	source.
Minerals	A list of various minerals alone with their	Uses Mineral
	properties. The mineral group drop-down box	Classes table as
	uses the Mineral Classes table as a source.	a source.
Models	A list of diagenetic models with the	Uses Literature
	corresponding bibliographic references is	table as source
	provided.	for citations.
Reactions	The main data table. It contains chemical and	
	biogeochemical reactions alone with	
	equilibrium, kinetic, and other information	
	pertaining to them.	
Transport	Common processes that contribute to transport	
	of solid, liquid and gas species in sediments are	
	listed. The table describes the properties of	
	those processes and common approximations	
	taken in their modeling.	

Retrieving data (Forms)

The most simple and straightforward way of retrieving information from dSED is by clicking on the corresponding Forms in the main dSED window (Figure 2). Descriptions

of individual forms are given in the section Forms and filters below and the relationships between Tables, Queries, and Forms in dSED are shown in Figure 3a and Figure 3b.

In some cases, the amount of text in a database record is greater than the number of lines that can be seen in the form window (this is usually the case for the Comments fields in the All Reactions table). In this case, the remaining text can be viewed by clicking on the corresponding Form field and scrolling down.

Additional forms (for better viewing) can be opened by clicking on the [>] buttons. These buttons are located next to reaction ID fields (to see all information for the reaction), next to reference list (to see full citation information), or next to model list (to see full citation for the corresponding modeling papers).

The design of the Forms can be easily modified to meet user's requirements. Also, a separate version formatted for printing can be designed by using the Reports tab in the main database window (Figure 2). As these are standard features of Microsoft Access, the corresponding instructions are provided in that program's manual and through the Help menu.

Several standard Microsoft Access search and filtering tools can be used inside the Form windows.

 $2\downarrow$ $4\downarrow$ Database records can be sorted alphabetically by any column in a Form.

A particular text (mineral name, chemical compound, etc.) can be searched.

Database records that contain a specified text can be selectively chosen (see examples).

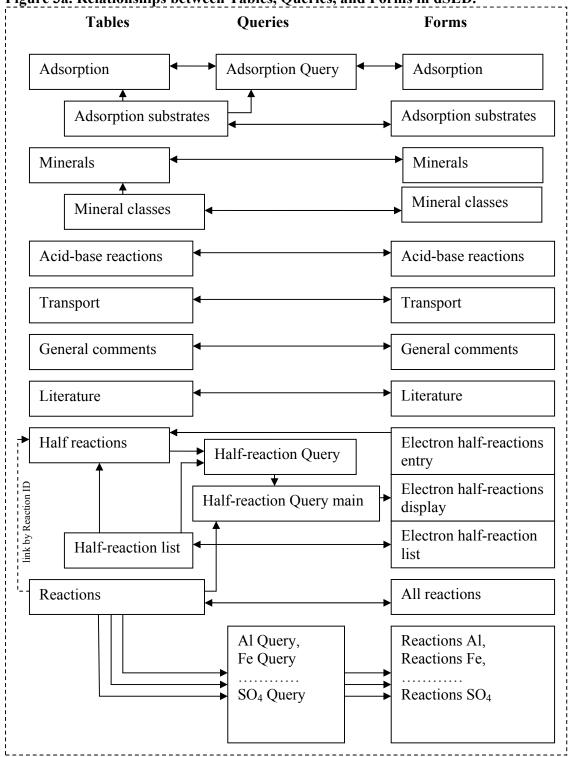



Figure 3a. Relationships between Tables, Queries, and Forms in dSED.

Figure 3b Relationship scheme by which bibliographic references are displayed in a subform of a form (New Reaction Entry) that displays reaction information. Similar schemes are employed to display bibliography for reaction rates, transport processes, sorption processes, and sorption substrates.

Forms and filters

The Forms listed in the main database window (Figure 2) are used to retrieve data from the database and present it in a format convenient for viewing. Many of the Forms are designed to present filtered data, e.g. only reactions involving a particular chemical compound, in which case they are connected to corresponding Queries where the selection criteria are defined. Some Forms can be described as auxiliary in the sense that they are designed as means of entering data into auxiliary tables, while the data entered is best viewed in other Forms.

dSED Form	Description	Query	
Abbreviations	Displays the content of the Abbreviations and		
and symbols	Symbols table.		
Acid-base	Displays information contained in the Acid-Base		
reactions	Reactions Table. The form is an auxiliary form		
	used only for data entry.		
Adsorption	Displays information contained in the Adsorption	Adsorption	
	Table.	Query	
Adsorption-	Displays all the information in the Adsorption-		
substrates	Substrates Table. The form is an auxiliary form		
	used only for data entry.		

At the present time, dSED contains the following Forms.

All reactions	This is the main database Form. It displays all	
All reactions	information about all reactions contained in the	
	Reactions Table.	
General		
	Displays information contained in the General	
comments	Comments Table.	
Electron half-	Displays information contained in the Half-	
reaction list	Reaction List Table. The form is an auxiliary	
F1 / 1 10	form used only for data entry.	H ICD C
Electron half-	Displays the reaction list with redox reactions	Half Reactions
reactions	represented in their half-reaction form. The	Query Main
display	corresponding data is contained in the Half-	
	Reactions Table.	
Electron half-	Similar to the Half-Reaction Display Form but is	
reactions Entry	used to enter the half reaction representation for	
	redox reactions. The corresponding data is	
	contained in the Half-Reactions Table.	
Literature	Displays a bibliographic reference list contained	
	in the Literature Table.	
Minerals	Displays the information contained in the	
	Minerals Table, i.e. mineral names, compositions,	
	genesis, etc.	
Models	Displays a list of diagenetic models	
New reaction	Similar to the All Reactions form but displays	Has subforms
entry form	information in Columnar, instead of Tabular,	that use LUT
	format so that only one reaction is visible at any	Queries:
	time. Contains subforms that display	Reaction-
	bibliographic reference information and published	Literature,
	model reaction sets.	Rate-Literature,
		and Reactions-
		Models
Reactions Al	Displays a list of reactions that involve aluminum	Al Query
	as part of their reactants or products.	
Reactions	Displays a list of reactions that are catalyzed or	Biocatalyzed
biocatalyzed	carried out entirely by living organisms.	Query
Reactions CH4	Displays a list of reactions that involve methane	CH4 Query
	as part of their reactants or products.	
Reactions Fe	Displays a list of reactions that involve iron (in all	Fe Query
	iron-bearing compounds) as part of their reactants	
	or products.	
Reactions FeS	Displays a list of reactions that involve iron	FeS Query
	monosulfide as part of their reactants or products.	
Reactions	Displays a list of reactions that involve pyrite as	FeS2 Query
FeS2	part of their reactants or products.	
Reactions H2S	Displays a list of reactions that involve hydrogen	H2S Query
	sulfide as part of their reactants or products.	
Reactions	Displays a list of reactions that can proceed	Inorganic Query
		Quille Xuely

inorganic	without participation of living organisms.	
Reactions Mn	Displays a list of reactions that involve manganese (in all Mn-bearing compounds) as part of their reactants or products.	Mn Query
Reactions N	Displays a list of reactions that involve nitrogen (in all forms) as part of their reactants or products.	N Query
Reactions NO3	Displays a list of reactions that involve nitrate as part of their reactants or products.	NO3 Query
Reactions OM	Displays a list of reactions that involve organic matter (solid or dissolved) as part of their reactants.	OM Query
Reactions P	Displays a list of reactions that involve phosphorus as part of their reactants or products.	P Query
Reactions photochemical	Displays a list of reactions that require light.	Photochemical Query
Reactions precipitation/ dissolution	Displays a list of reactions that involve precipitation or dissolution of minerals or amorphous compounds.	Precipitation Query
Reactions SO4	Displays a list of reactions that involve sulfate as part of their reactants or products.	SO4 Query
Reactions redox	Displays a list of reactions in which a change of redox state for some of the reactant or products occurs.	Redox Query
Single adsorption process	Displays all information for one adsorption process in a single window.	Adsorption query, uses LUT Adsorption- Literature Query
Single reaction	Displays all information for one reaction in a single window (same as New Reaction Entry).	
Single transport process	Displays all information for one transport process in a single window.	Uses LUT Transport- Literature Query
Transport processes	Displays all the information on transport processes in sediments that is contained in the Transport table.	

Examples

Example 1. Selecting a set of reactions used in a cited reactiontransport model.

The Reaction Sets column in the dSED Single Reaction Form contains references to various reaction-transport models. Using these references, the reaction sets that are used in those models can be extracted, e.g. for their comparison or analysis.

- Click on the button in the Single Reaction Form next to the Reaction Sets column. This will open a new Form that contains information about the listed models.
- 2. Click on the button Reaction Set next to the model whose reaction set you want to view. A new Form will open that contains reaction processes that have been used in that model.

Example 2. Printing database records for a specific set of reactions.

To print information provided by one or more of the dSED Tables or existing Queries, it is convenient to use the Report feature of Microsoft Access.

- 1. In the Report tab (Figure 2), click on the New button in the top toolbar and select Report Wizard.
- 2. Select the fields to be included in the report and follow the prompts to select the report style.
- 3. Once the report is created, you can modify its layout (e.g. change column width)

in the Report Design window by clicking the **button**.

🖶 Query1	📾 Query1 : Select Query			
* ID React Alterr	tions tion hative J/mol)			
				-
Field:	ID	Reaction	Comments	References
Table:	Reactions	Reactions	Reactions	Reactions
Sort:				
Show:				
Criteria:	25			
or:	49			
	98			
	101			

Figure 4. Selecting a set of reactions for printing

To print dSED records for an arbitrarily defined set of reactions, that reaction set can be defined in a new Query.

- 1. In the Queries tab (Figure 2), click on the New button in the top toolbar and select the Design view.
- 2. In the Show Table window, select the Table(s), from which the information should be derived, e.g. Reactions table.
- 3. In the Query Design window, select the desired fields from the corresponding drop-down boxes. In the example in Figure 4, the Reaction ID, Reaction formula, Comments, and References have been selected. The checkboxes under the field descriptions indicated whether the information in that field will be included in the query (and report) output.
- 4. In the Criteria area of the window, specify the reactions for which information should be printed. In Figure 4, the reactions have been specified by their IDs. Specifying criteria in different rows is equivalent to a logical OR operator while entering criteria in different columns of the same row is equivalent to an AND operator (refer to Microsoft Access manual or Help for more details).
- 5. Close the Query Design window and choose to save it.
- 6. In the Report tab (Figure 2), click on the New button in the top toolbar.
- 7. Select Report Wizard and select the name of your query from the drop-down list.
- 8. Select the fields to be included in the report and follow the prompts to select the report style.

Once the report is created, you can modify its layout (e.g. change column width) in the Report Design window by clicking the **button**.

Example 3. Arranging mineral list by mineral classes.

The list of minerals can be viewed alphabetically by mineral names or by mineral class names. To arrange the list by mineral class, click in the Mineral Classes column and then click on one of the $2\downarrow$ $2\downarrow$ button in the toolbar.

Part II – Modeling and Geochemical Background Information

This section provides reference to published and web resources describing the fundamentals of diagenetic modeling and the essential knowledge related to various aspects of modeling early sediment diagenesis.

General references

[1] P. Regnier, J.P. O'Kane, C.I. Steefel, and J.P. Vanderborght (2002). Modeling complex multi-component reactive-transport systems: Towards a simulation environment based on the concept of a Knowledge Base. Applied Math. Mod., 26, 913-927.

Knowledge Base is maintained by the Marine Geochemistry group at the University of Utrecht, the Netherlands: <u>www.geo.uu.nl/Research/Geochemistry/kb</u>. It is an ongoing project whose goal is to create an updatable knowledge base that could be integrated with numerical early diagenesis simulators also developed by the same group.

[2] R.A Berner (1980). Early Diagenesis: A Theoretical Approach. (Princeton series in geochemistry), Princeton Univ. Press.

[3] B.P. Boudreau (1997) Diagenetic Models and Their Implementation: Modeling Transport and Reactions in Aquatic Sediments. Springer, Berlin.

[4] P.C. Lichter, C.I. Steefel, and E.H. Oelkers (editors) (1996). Reactive Transport in Porous Media. *Rev. Mineral.* 34. Mineralogical Society of America series.

[5] C.I. Steefel and P. Van Cappellen (1998). Reactive transport modeling of natural systems. *J. Hydrol.* 209, 1-7.

[6] W. Stumm and J.J. Morgan (1996). Aquatic Chemistry: Chemical equilibria and rates in natural waters, 3rd ed. John Wiley, New York.

[7] C. A. J. Appelo and D. Postma (1993) Geochemistry, groundwater and pollution. Rotterdam, Balkema.

Diagenetic models

[8] B.P. Boudreau (1996). A method-of-lines code for carbon and nutrient diagenesis in aquatic sediments, *Computers & Geosciences*, 22, 479-496.

[9] B.P. Boudreau (1999). Metals and models: Diagenetic modeling in freshwater lacustrine sediments. J. Paleolimnology 22, 227-251.

[10] S.P. Dhakar and D.J. Burdige (1996). A coupled, nonlinear, steady-state model for early diagenetic processes in pelagic sediments. *Am. J. Sci.* 296, 296-330.

[11] J. V. Klump, C. S. Martens (1989). The Seasonality of Nutrient Regeneration in an Organic-Rich Coastal Sediment: Kinetic Modeling of Changing Pore-Water Nutrient and Sulfate Distributions. *Limnol. Oceanogr.* 34, 559-577.

[12] F.J.R Meysman, J.J. Middelburg,; P.M.J. Herman, C.H.R. Heip (2003). Reactive transport in surface sediments. II. Media: an object-oriented problem-solving environment for early diagenesis, Computers and Geosciences 29, 301-318.

[13] P. Van Cappellen and Y. Wang (1996). Cycling of iron and manganese in surface sediments: a general theory for the coupled transport and reaction of carbon, oxygen, nitrogen, sulfur, iron, and manganese, *Am. J. Sci.* 296, 197-243.

[14] P. Van Cappellen and Y. Wang (1996). A multicomponent reactive transport model of early diagenesis: Application to redox cycling in coastal marine sediments, *Geochim. Cosmochim. Acta* 60, 2993-3014

Thematic reviews

Element chemistry

[15] T.H. Christensen et al (2000). Characterization of redox conditions in groundwater contaminant plumes. *J. Contaminant Hydrol.* 45, 165-241.

[16] W. Davison (1993). Iron and manganese in lakes. Earth-Sci. Rev. 34, 119-163.

[17] J. W. Morse, F.J. Millero, J.C. Cornwell, and D. Rickard (1987). The chemistry of the hydrogen sulfide and iron sulfide systems in natural waters. *Earth-Sci. Rev.* 24, 1-42.

[18] D. Postma and R. Jakobsen (1996). Redox zonation: Equilibrium constraints on the Fe(III)/SO4-reduction interface. *Geochim. Cosmochim. Acta* 60, 3169-3175.

[19] A.T. Stone and J.J. Morgan (1987). Reductive dissolution of metal oxides; in Aquatic Surface Chemistry, edited by W. Stumm, Wiley-Interscience, New York.

[20] B. Wehrli (1990). Redox reactions of metal ions at mineral surfaces, in Aquatic Chemical Kinetics: Reaction Rates of Processes in Natural Waters, edited by W.Stumm, Wiley, New York.

[21] R.R. Haese (2000). The reactivity of iron; in Marine Geochemistry, edited by H.D. Schulz and M.Zabel, Springer, Berlin.

[22] P.L. Smedley and D.G. Kinniburgh (2002). A review of the source, behaviour and distribution of arsenic in natural waters. Appl. Geochem. 17, 517-68.

Microbial processes and organic matter decomposition

[23] W.D. Burgos et al (2002). Theoretical and experimental considerations related to reaction-based modeling: A case study using iron (III) oxide bioreduction. *Geomicrobiology J.* 19, 253-287.

[24] K.W. Hanselmann (1986). Microbially mediated processes in environmental chemistry (Lake sediments as model systems). *Chimia* 40, 146-159.

[25] S.M. Henrichs (1993). Early diagenesis of organic matter: The dynamics (rates) of cycling of organic compounds; in Organic Geochemistry, edited by M.H. Engel and S.A. Macko. Plenum Press, New York.

[26] K.H. Nealson (1997). Sediment Bacteria: Who's there, what are they doing, and what's new? *Ann. Rev. Earth Planet. Sci.* 25, 403-434.

[27] W.S. Reeburgh (1983). Rates of biogeochemical processes in anoxic sediments. *Ann. Rev. Earth Planet. Sci.* 11, 269-98.

Thermodynamic Equilibrium Calculations

[28] A.L. Herberlin and J.C. Westall (1999). FITEQL: A computer program for determination of chemical equilibrium constants from experimental data, Report 99-01, Department of Chemistry, Oregon State University, Corvallis.

[29] Parkhurst, D.L., and Appelo, C.A.J., 1999, User's guide to PHREEQC (Version 2)--a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations: U.S. Geological Survey Water- Resources Investigations Report 99-4259, 312 p.

[30] D.L. Parkhurst, D.C. Thorstenson, and L.N. Plummer (1980). PHREEQE – a computer program for geochemical calculations. U.S. Geol. Surv., Water-Resour. Invest. 80-96, 193 pp.

[31] J.C.L. Meeussen (2003). ORCHESTRA: An object-oriented framework for implementing chemical equilibrium models. Env. Sci. Technol. 37, 1175-1182.