
Computers & Geosciences 29 (2003) 1085–1089

Are Hurst exponents estimated from short or irregular
time series meaningful?
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Abstract

We show that several time series analysis methods that are often used for detecting self-affine fractal scaling and

determining Hurst exponents in data sets may lead to spurious results when applied to short discretized data series. We

show that irregularities in the series, such as jumps or spikes (as are often found in geophysical data) may lead to

spurious scaling and consequently to an incorrect determination of the Hurst exponent. We also illustrate the statistical

error in measuring Hurst exponent in series where self-affine fractal scaling does exist. Users should be aware of these

caveats when interpreting the results of short time series analysis.

r 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Time and space series analysis methods have become

widespread and valuable tools in studying geological

data. However, many of the common methods, while

accurate in the theoretical limit of continuous long

series, may lead to significant errors when applied to

short or irregular discretized sequences of real experi-

mental data. In this paper, we outline some caveats that

should be avoided in the analysis of such series. We

demonstrate that the uncertainty in the Hurst exponent

values measured from short data sets (less than 500

points) is usually too large for most practical purposes.

We also show that the presence of large inhomogeneities

in the series, such as large-magnitude abrupt changes in

the series variable (jumps or spikes), may lead to

spurious results in detecting fractal scaling and calculat-

ing Hurst exponents. To our knowledge, these caveats

have not been reported previously. Our results suggest

that many of the published results of such series

analysis, in order to be meaningful, need to be revised

and substantiated by additional evidences.

2. Measurement error on the Hurst exponent

The Hurst exponent is commonly used as a measure

of the geometric (fractal) scaling in the data series

(Turcotte, 1997). If the series xðtÞ is a self-affine fractal

then xðbtÞ is statistically equivalent to bH xðtÞ; where H is

the Hurst exponent. The Hurst exponent is frequently

calculated for the experimentally obtained data sets to

characterize noisy data series. It is also used in

characterizing stochastic processes. For example, Brow-

nian noise is a self-affine fractal with a Hurst exponent

H ¼ 0:5; white noise may be considered as having

H ¼ 0; and an exactly self-similar process would be

characterized by H ¼ 1:
In many cases, when dealing with geological and

geophysical data, the Hurst exponent is calculated from

a series that consists of a short discrete set of values. One

of the commonly used methods for calculating the Hurst

exponent is described below. Here, we specify the
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measurement error for the H value, i.e. we determine the

range within which a Hurst exponent value calculated

from such short series may deviate from its actual value.

For relatively long series (more than 1000 points), most

of the methods cannot reliably generate the Hurst

exponent values with uncertainties smaller than 0.1, over

the full range of their values (e.g. Meakin, 1998 and

references therein). Slightly better results (with an

uncertainty of about 0.05) can be achieved for H close

to 0.5 for very large, high-quality data sets.

Here, we illustrate that the uncertainty in the Hurst

exponent values measured from short series, such as

many of the available geophysical data sets, is typically

much larger. We use a Brownian noise as an exemplary

process with a known Hurst exponent of H ¼ 0:5:
Theoretically, this value may be obtained in the limit of

an infinitely long series or when a statistical average is

taken over a very large number of noise realizations.

To measure the Hurst exponent, we can use a simple

method that is frequently employed for that purpose in

geosciences (Meakin, 1998; Holten et al., 1997; Hoskin,

2000). First, the so-called series width wðlÞ is calculated
as a function of the time scale l:

wðlÞ ¼ /ð/ðx �/xSlÞ
2SlÞ

1=2S; ð1Þ

where /xSl denotes the average over the part of the

series of the length l: The outer brackets indicate

averaging over all possible averaging windows of width

l along the series. If the series exhibits fractal scaling

over some range, a straight line is obtained in that range

when the function wðlÞ is plotted on a log–log plot. The

slope of this line is typically used as a measure of the

Hurst exponent.

In all our simulations described below (except for a

few explicitly mentioned cases), the series xðtÞ contained
256 data points.

We calculated the Hurst exponent values for 200

Brownian noise realizations. When the obtained H

values are binned in a histogram, a rather symmetric

bell-shaped distribution is obtained (inset in Fig. 1). The

distribution of H values exhibits a maximum around

H ¼ 0:5 and occupies the range from 0.2 to 0.8. For

longer series, the width of the distribution decreases thus

improving the accuracy of measuring the Hurst ex-

ponent value (Fig. 1).

When wðlÞ is calculated for individual realizations, a

fractal scaling typically exists in a limited region of

intermediate scales. For small scales, the wðlÞ graph

typically curves down as a result of averaging over a

large number of small-sized data sets while for large l the

number of data points is insufficient to obtain an

accurate result, although methods exist to correct for

this effect (Meakin, 1998). For short series, the region of

the intermediate scales where fractal scaling exists may

not be properly defined for all realizations and the exact

shape of the distribution depends on the particular

choice of the scaling region that is used to calculate H:
A similar bell-shaped type of distribution for the

measured Hurst exponent values is obtained when a so-

called bounded Brownian noise is used, whereby a

Brownian noise process is confined to a specific range of

values. When the process variable reaches the boundary

of this range, it is reflected off this boundary. This noise

type is frequently used to simulate fluctuations in the

values of physical parameters that are naturally limited

to a certain range, e.g. a percentage of an impurity in a

crystal (Holten et al., 1997). Such restriction of the noise

process introduces anti-persistence to the series. In

agreement with the fact that anti-persistent behavior is

characterized by Ho0:5; our tests indicate that the

restriction of the process variable range decreases the

distribution’s mean value but does not significantly

affect its variance.

Thus, in the case of Brownian noise, the values of H

calculated according to Eq. (1) from a single short data

set may deviate from its theoretical value by as much as

E0.3 (or 60%), as measured by the range of the H

values in the distribution in Fig. 1. Because of such a

wide range, special care should be taken when inter-

preting the scaling parameters obtained from experi-

mental data sets.

3. Impact of ‘jumps’ and ‘spikes’ on measured fractal

scaling

Many experimentally obtained series are substantially

inhomogeneous. Quite often, the regions where the

fluctuations in the series variable are relatively small are
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Fig. 1. Distribution of Hurst exponent values. Inset shows

typical distribution of Hurst exponent values measured from

different realizations of Brownian noise process. Graph shows

standard deviation of such distributions as a function of series

length.
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separated by transition regions where the value of the

variable changes substantially over a very short interval

(e.g. Pollok et al., 2001). Such transitions between the

different ranges of the series variable will be referred to

here as ‘jumps’. Another irregularity, which is com-

monly found in data sets, are ‘spikes’, i.e. unusually

large or small single values of the series variable. In spite

of these irregularities, the series are frequently hypothe-

sized to be generated by a single stochastic or chaotic

process and fractal scaling is often reported in such

series (e.g. Cortini and Anastasio, 2001; Pollok et al.,

2001). In many cases, when fractal scaling is observed, it

is taken as a characteristic of the underlying pattern-

forming process and corresponding conclusions are

drawn about the pattern formation mechanism. Here,

we show that, in the case of short series, jumps and

spikes in the series may lead to the spurious detection of

fractal scaling.

Suppose the series is a step function (inset in Fig. 2)

and the location of the step is chosen randomly.

Although such series clearly does not possess any fractal

scaling, the function width wðlÞ calculated according to

Eq. (1) exhibits a power law-type dependence on the

scale l typical of fractal scaling (Fig. 2). Spurious scaling

arises because, in the process of calculating wðlÞ; the step
is ‘swept’ more times by wider averaging windows than

by the narrower ones so the calculated series width

increases with the scale.

Analytically, this effect may be illustrated as follows.

Suppose the series xðtÞ represented by a step-function

starts at t ¼ 0 and has the total length T : Suppose also

that the location of the jump in the series is chosen such

that x ¼ 0 for toa and x ¼ 1 for t > a; where a is some

value between 0 and T : Let us calculate the series width
wðlÞ according to Eq. (1).

If s denotes the starting point of an averaging window

of length l then the variance /x2Sl �/xS2
l and the

mean /xSl that are taken inside this window are

calculated from

/xSl ¼
1

l

Z sþl

s

x dt; /x2Sl ¼
1

l

Z sþl

s

x2 dt: ð2Þ

Let us assume, for simplicity, that the jump is located far

enough from either end of the series and let us consider

the spatial scales l such that loa and loT � a: If the
jump in the step function is not covered by the averaging

window, i.e. 0osoa � l or aosoðT � lÞ; then the value

of the series xðtÞ is constant everywhere within the

window and therefore x �/xSl ¼ 0:
For a � losoa; integration over the interval from a

to s þ l; in which xðtÞ is different from zero, gives

/xSl ¼ ðs þ l � aÞ=l ð3Þ

and thus

/ðx �/xSlÞ
2Sl ¼

1

l

Z sþl

s

xðtÞ �
1

l
ðs þ l � aÞ

� �2
dt

¼
1

l

Z a

s

0�
1

l
ðs þ l � aÞ

� �2
dt

þ
1

l

Z sþl

a

1�
1

l
ðs þ l � aÞ

� �2
dt

¼
1

l2
ðs þ l � aÞða � sÞ: ð4Þ

Averaging over all possible windows of width l is done

by integrating over the starting point s and gives

wðlÞ ¼
1

T � l

Z T�l

0

/ðx �/xSlÞ
2Sl

� �1=2
ds

¼
1

T � l

Z a

a�l

ðs þ l � aÞða � sÞ
l2

� �1=2
ds

¼
p
8

l

T � l
: ð5Þ

For l5T ; this dependence on l results in an approxi-

mately straight line on a log–log plot of wðlÞ and a

spurious Hurst exponent of H ¼ 1: Slightly different

values of the Hurst exponent may be obtained if the

jump is located close to either end of the series.

The value H ¼ 1 is obtained here as a result of

applying a scaling exponent determination technique to

an object, which is not, strictly speaking, a self-affine

fractal. The same value is obtained by other techniques,

such as a box-counting method. However, when such

objects, e.g. jumps in the series variable, appear in

experimental data, they lead to a false fractal scaling

detection.

In order to illustrate this statement, we have

performed a simulation by adding jumps to a series

generated by a white noise (Fig. 3). White noise may be
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Fig. 2. Spurious scaling due to jump in series. Series width wðlÞ
was calculated according to Eq. (1) from series constructed by

step function (shown in inset). Slope is measured by fitting a

straight line in the region of l values from 10 to 60.
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regarded to exhibit scaling with H ¼ 0 (Turcotte, 1997).

Adding jumps, which are larger in magnitude than

typical noise fluctuations, produces a spurious fractal

scaling. As seen in Fig. 3, the jumps produce a false

fractal scaling even if their magnitude is not very large so

that it is hard to distinguish them from the white noise

fluctuations. Spurious scaling regions may also be

obtained, for example, when jumps are added to a series

produced by a non-scaling Ornstein–Uhlenbeck noise

(Fig. 4).

Spikes in the series also lead to spurious scaling

(Fig. 5). Analytical calculations similar to the ones

performed above for the case of a single jump indicate

that a single spike in the series leads to the series width

wðlÞ of the form

wðlÞ ¼

ffiffiffiffiffiffiffiffiffiffi
l � 1

p
T � l

ð6Þ

and consequently, for 15l5T ; to a spurious Hurst

exponent H ¼ 0:5:
Besides measuring the series width according to

Eq. (1), a power spectrum method is often employed

to detect fractal scaling in the series and to determine the

value of the Hurst exponent (e.g. Halden and

Hawthorne, 1993). For a series which exhibits such

scaling, the power spectrum SðoÞ (usually obtained by

performing a Fourier transform on the series) follows

the power law:

Spo�b; ð7Þ

where o is the frequency and the exponent b is related to

the Hurst exponent H by H ¼ ðb� 1Þ=2 (Meakin, 1998).

Thus, for Brownian noise, b ¼ 2:
Consider an infinitely long series, which consists of

one jump described by a step function YðtÞ defined as

YðtÞ ¼ 0 for tp0 and YðtÞ ¼ 1 for t > 0: The Fourier

transform of this function yields

Y ðoÞ ¼
Z þN

�N

YðtÞ e�iot dt ¼
1

io
ð8Þ

and the power spectrum is SðwÞ ¼ jY j2po�2: Conse-
quently, a spurious fractal scaling may be obtained with

the scaling exponent b¼2; which is the same value as for

the Brownian noise (Fig. 6)! Applying this method to a

noisy series of finite length with one jump typically

ARTICLE IN PRESS

Fig. 3. Spurious scaling is obtained when jumps are added to

series generated by white noise process. Four jumps of random

magnitude and sign (up or down) were added at random

locations in series. Resulting series is shown in inset and graph

shows corresponding series width wðlÞ:

Fig. 4. Series width wðlÞ computed from series generated by

Ornstein–Uhlenbeck noise with noise correlation time t ¼ 10 to

which one jump was added. Slope is measured by fitting a

straight line in the region of l values from 10 to 50.

Fig. 5. Series width wðlÞ computed from series containing one

spike. Difference between obtained value of slope and its

analytically calculated value of 0.6 is due to approximations

taken in deriving Eq. (6). Slope is measured by fitting a straight

line in the region of l values from 10 to 50.

S. Katsev, I. L’Heureux / Computers & Geosciences 29 (2003) 1085–10891088



produces slightly smaller values of b: In Fig. 7, spurious

power spectrum scaling is shown for an Ornstein–

Uhlenbeck noise (Gardiner, 1983). Fitting a straight line

to the power spectrum yields b ¼ 1:72; which corre-

sponds to H ¼ ðb� 1Þ=2 ¼ 0:36:
The power spectrum of a single spike is approximately

that of a delta function and is flat. Therefore, the

presence of spikes in the series produced by a scaling

process may decrease the measured value of b: In

general, detecting the scaling exponent by fitting a

straight line to the series power spectrum is, in practice,

insufficiently accurate for most short experimental series

because of the large error in the fit.

4. Conclusion

We have outlined some of the caveats in interpreting

the results of the time series analysis when the data set is

short or contains substantial inhomogeneities, such as

jumps or spikes in the series variable. Spurious fractal

scaling was shown to arise when the scaling is estimated

by calculating the width of the series or by estimating

scaling in the power spectrum. Our results suggest that

many results of the analysis of short experimental data

sets, in order to be meaningful, need to be substantiated

by additional evidence.
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Fig. 6. Spurious power spectrum scaling due to jump in series.

Fig. 7. Spurious power spectrum scaling in series produced by

adding one jump to Ornstein–Uhlenbeck noise process with

correlation time t ¼ 10: Noise realization is same as in Fig. 4.
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