Homework 1, due Friday, May 23rd in class.
(1) Compute the sum of the vectors $(-1,-1)$ and $(2,3)$, and illustrate this sum geometrically.
(2) Find the angle between the vectors $(0,1,1)$ and $(1,0,1)$.
(3) Find a unit vector that is orthogonal to both $\vec{i}+\vec{j}$ and $\vec{i}+\vec{k}$.
(4) For $\vec{a}=(1,0,0), \vec{b}=(1,1,0)$, and $\vec{c}=(1,1,1)$, compute the following quantities if they have meaningful answers.
(a) $\vec{a} \times(\vec{b} \times \vec{c})$
(b) $(\vec{a} \cdot \vec{b}) \times(\vec{a} \cdot \vec{c})$
(c) $(\vec{a} \cdot \vec{b}) \vec{c}$
(d) $(\vec{a} \times \vec{b}) \cdot(\vec{a} \times \vec{c})$
(e) $\vec{a} \cdot(\vec{b} \times \vec{c})$
(f) $\vec{a} \times(\vec{b} \cdot \vec{c})$
(5) Find an implicit equation for the plane that contains the point $(2,0,-1)$ and which has normal vector $2 \vec{j}+\vec{k}$.
(6) Find an implicit equation for the plane that contains the points $(1,1,0),(1,0,1)$, and $(0,1,1)$.
(7) Compute the projection of the vector $(1,1,1)$ onto the direction of the vector $(2,0,0)$.
(8) Determine the type of quadric surface defined by $x^{2}+\left(\frac{y}{9}\right)^{2}+z^{2}=1$ and describe its intersection with the plane $y=0$.
(9) Describe the intersection of a plane $z=s$ with the surface given by $x^{2}+4 y^{2}-4 z^{2}=$ -1 . For which values of s is the intersection empty?
(10) Rewrite the quadric surface $z=x^{2}-y^{2}$ in spherical coordinates in the form $\rho=f(\theta, \phi)$.
(11) Find the center and radius of the sphere $x^{2}+y^{2}+z^{2}=x+y+z$.
(12) Find the largest sphere contained in the first octant (i.e. $x \geq 0, y \geq 0, z \geq 0$) with center $(5,4,3)$.

