
Concave Central Configurations in the Four-Body Problem

Marshall Hampton

A dissertation submitted in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

University of Washington

2002

Program Authorized to Offer Degree: Mathematics





University of Washington

Abstract

Concave Central Configurations in the Four-Body Problem

by Marshall Hampton

Chair of Supervisory Committee:

Central configurations are important landmarks in the n-body problem. The history of their

study is summarized, and it is proved that for any four positive masses there exists a concave

central configuration with those masses. This question was first posed in a 1932 paper by

MacMillan and Bartky [MB]. One corollary of the proof is that the set of equivalence classes

of concave central configurations under rotations, dilations, reflections, and relabelings is

homeomorphic to a three-dimensional ball (including only part of its boundary). For the

generic case in which all the masses are different, another corollary is that there are at least

eight concave central configurations with those masses.





TABLE OF CONTENTS

List of Figures iii

Chapter 1: Introduction 1

Chapter 2: Importance of central configurations 3

Chapter 3: Classification of central configurations 7

Chapter 4: Four-body central configurations 10

Chapter 5: Convex central configurations 16

Chapter 6: Canonical concave configurations 20

Chapter 7: An existence theorem for concave central configurations 23

Chapter 8: Border configurations 36

Chapter 9: Topological lemma 45

Chapter 10: Extension of the mass map 46

10.1 Face 1: First isosceles case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

10.2 Face 2: Second isosceles case . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

10.3 Face 3: Outer equilateral triangle . . . . . . . . . . . . . . . . . . . . . . . . . 52

10.4 Face 4: Border configuration boundary . . . . . . . . . . . . . . . . . . . . . . 53

10.5 Face 5: r = 0 boundary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

10.6 Face 6: R0 = RC boundary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

10.7 Face 7: R0 = 1 boundary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

i



10.8 Edges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

10.9 Vertices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Chapter 11: Surjectivity of the mass map 60

Chapter 12: Numerical experiments 62

Chapter 13: Conclusion 63

ii



LIST OF FIGURES

5.1 Starting point of convex construction . . . . . . . . . . . . . . . . . . . . . . . 16

5.2 Convex construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

6.1 Region of possible positions of the third point . . . . . . . . . . . . . . . . . . 21

6.2 Regions of possible positions for the interior point . . . . . . . . . . . . . . . 22

7.1 Example of possible r34 values . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

10.1 Schematic of Tb structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

10.2 Tb structure showing diagonal . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

10.3 Isosceles type-1 face and part of its image in M (schematic) . . . . . . . . . . 51

10.4 Type-2 isosceles face T2b and part of its image (schematic) . . . . . . . . . . . 52

10.5 Outer equilateral face of Tb and its image in M (schematic) . . . . . . . . . . 53

10.6 Border configuration face of Tb and part of its image in M (schematic) . . . . 54

10.7 r = 0 face of Tb and part of its image in M (schematic) . . . . . . . . . . . . 55

10.8 R0 = RC face of Tb and its image in M . . . . . . . . . . . . . . . . . . . . . 55

10.9 R0 = 1 face of Tb and part of its image in M . . . . . . . . . . . . . . . . . . 56

12.1 Curves of points for a given outer triangle . . . . . . . . . . . . . . . . . . . . 62

iii



ACKNOWLEDGMENTS

My greatest thanks go to my advisor, Robin Graham, for the tremendous amount of time,

energy, and support he has given me. I would also like to thank all the math teachers that I

have had through the years. Thanks to Steve Mitchell and Keir Lockridge for clarifying some

of the topology involved, and to Daniel Meyer for his helpful suggestions and proof-reading.

Finally, I would like to thank Pamela Clifton for her help and support.

iv



1

Chapter 1

INTRODUCTION

The study of the dynamics of n point masses interacting according to Newtonian grav-

ity [N] is usually referred to as the n-body problem. More precisely, we consider n particles

at qi ∈ R
d with masses mi ∈ R+, i = 1, . . . , n, and q̈i =

∑
i6=j mj

qj−qi

|qj−qi|3 . There are many

problems associated with the dynamics of such a system. The study of these problems has

been immensely fruitful; it has motivated and influenced such developments as differential

and integral calculus, convergence of series expansions, and chaotic dynamics. Many nat-

ural questions arise which prove difficult or impossible to solve, especially as the value of

n is increased. The two-body problem has been completely solved, but already for n = 3

the complexity increases to such an extent that many open problems remain. Newton once

wrote that he only got headaches when working on the three-body problem [We].

In order to make progress against such complexity one must ask relatively simple ques-

tions, make assumptions about the parameters of the system, or both. The most successful

instance of the first strategy has been the study of the periodic orbits of the system. Besides

being of interest in their own right, they are, as Poincaré wrote, “the only breach by which

we can penetrate a fortress hitherto considered inaccessible” [Po1]. A particularly interest-

ing type of periodic orbit in the planar n-body problem is one in which the particles remain

in the same shape relative to one another. The shapes possible for the particles in such

orbits are called central configurations; this term is apparently due to Wintner [Wn]. The

equations determining central configurations can be generalized to define them in higher

dimensions as well; more precise definitions will be given in Chapter 2.

After surveying some of the problems in which central configurations arise we will sum-

marize some of the most important results concerning them. Euler and Lagrange classified
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all the central configurations of the three-body problem [Eu], [La], namely for any given

masses there are three collinear configurations and the equilateral triangle. The four-body

central configurations are poorly understood except in the case of all the masses being equal,

which was recently (1996) solved by Albouy [Al2]. A few general tools will be summarized

which have been developed to study the general case, but very little is known for n ≥ 4.

Then the theorems and lemmas needed to prove the main theorem of the paper will be

presented. The main theorem is:

Theorem 1. For any four positive masses (m1,m2,m3,m4) ∈ R
4
+ there exists a planar

concave central configuration with the fourth point strictly in the convex hull of the other

three points.

The proof consists of several steps. After defining a canonical representative for each

equivalence class of concave configurations under rotations, dilations, reflections, and re-

labelings, the set of such representatives of concave central configurations is shown to be

homeomorphic to a three-dimensional ball (including only part of its boundary). Next, a

map from the interior of this set to the space of masses M is extended to the boundary.

In order to define a continuous extension, some of the boundary points must be blown up.

Finally, the extended map restricted to the boundary is shown to have non-zero degree onto

its image, which implies that the map is surjective onto M. A more detailed outline of the

proof and some of its corollaries is given in chapter 13.
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Chapter 2

IMPORTANCE OF CENTRAL CONFIGURATIONS

After making the definition of central configurations more precise, this chapter will

establish some notation and conventions, and briefly sketch the important applications of

central configurations.

In the n-body problem we consider n particles at qi ∈ R
d with masses mi ∈ R+, i =

1, . . . , n, and the dynamics given by q̈i =
∑

j 6=i mj
qj−qi

|qj−qi|3 = 1
mi

∂U
∂qi

, where U is the Newtonian

potential U =
∑

i<j
mimj

|qi−qj | . Note that this potential function is positive, in contrast to the

convention often used in introductory books. We will use q ∈ R
nd and m ∈ R

n
+ to denote

the position and mass vectors (q1, . . . , qn) and (m1, . . . ,mn) respectively. Because the total

momentum of the particles is conserved, one can split the n-body dynamics into a linear

motion of the center of mass c = 1
M

∑
miqi and motion around the center of mass, where

M =
∑n

i=1 mi. So without loss of generality we will assume that the center of mass is at

the origin (for details on this procedure see [SM]). To avoid singularities we will restrict q

to be in R
nd \ ∆, where ∆ =

⋃
i6=j{q| qi = qj}.

Definition 1. A position vector q ∈ R
nd \∆ is defined to be a central configuration if there

exists a mass vector m ∈ R
n
+ and a parameter λ ∈ R+ such that

λqi =
∑

j 6=i

mj
qi − qj

|qi − qj|3
. (2.1)

Since the right hand side of (2.1) is equal to −q̈i, in the dynamical context each particle

is accelerated toward the center of mass in proportion to its distance from the center of

mass. It is not hard to show that if every particle in such a configuration starts with an

initial velocity of zero the particles will collapse to the origin, reaching it simultaneously.

Configurations (vectors in R
nd \∆) are considered equivalent if they are similar modulo

reflections and relabelings, i.e. q, p ∈ R
nd\∆ are equivalent if there is a rotation and dilation

of R
d that sends each qi to pσ(i), where σ is a permutation of {1, 2, 3, 4}. Another way to
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phrase this is that the equivalence classes are the orbits of R
+ ·O(d)×S4 acting on (Rd)n by

(λR, σ)(q1, q2, q3, q4) = (λRqσ−1(1), λRqσ−1(2), λRqσ−1(3), λRqσ−1(4)). It is easy to see from

the homogeneity and symmetry of (2.1) that any configuration which is equivalent to a

central configuration is also a central configuration. By the number of central configurations

we will mean the number of equivalence classes under the above equivalence. Sometimes it

will be more convenient to speak of affine equivalence classes, which are the same as above

but without relabelings or reflections - i.e. without the S4 action and with S0(d) instead of

O(d).

There is another characterization of central configurations that is often useful, which is

due to Dziobek [D]. For a given mass vector, if we consider the set of positions S with a

moment of inertia I equal to 1, S = {q ∈ R
nd\∆ | ∑

mi|qi|2 = 1 and
∑

miqi = 0}, then the

fixed points under the gradient flow X = ∇(U |S) are central configurations. The gradient

is defined via the metric induced by the Euclidean metric on R
d. The restriction to I = 1

removes the dilational degeneracy; in order to obtain isolated fixed points the rotational

degeneracy must be removed by considering the quotient of S under the diagonal action

of SO(d) as described above. The gradient flow descends to the quotient space and then

there is a one to one correspondence between fixed points of the flow and affine equivalence

classes of central configurations with the given mass vector.

In the planar case, which is the focus of this paper, it is sometimes notationally conve-

nient to use complex coordinates. Following the presentation in [SM], we write the position

vector as z ∈ C
n \ ∆, where (Re[zi], Im[zi]) = qi. Now consider the homographic solutions

of the planar n-body problem, i.e. solutions which may rotate and dilate about the origin

but which remain similar to the initial configuration. Such solutions can be written as

z(t) = ζ(t)w, where ζ(t) is a complex function of the real variable t, and w ∈ C
n. Plugging

this form of a solution into Newton’s equations gives us ζ̈wi = ζ|ζ|−3
∑

j 6=i
mj(wj−wi)
|wj−wi|3 for

i = 1, . . . , n. If we combine terms that do not depend on t we obtain (2.1) in complex

coordinates, where −λ < 0 is the constant that the time dependent terms must equal, i.e.

we also have ζ̈ζ
1

2 ζ̄
3

2 = −λ.

So in order to obtain a solution of the form ζ(t)w of the n-body problem we must solve

the complex differential equation ζ̈ζ
1

2 ζ̄
3

2 = −λ and we must have a solution to (2.1). The
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solutions to the differential equation are the parameterized conics in the plane familiar from

the study of the two-body problem. For a good treatment of the two-body problem see [Pl].

In particular, one solution is ζ = ei
√

λt which corresponds to every particle having a circular

orbit. If such a system were viewed in rotating coordinates with angular speed ω =
√

λ it

would be an equilibrium, which is why planar central configurations are often referred to as

relative equilibria. In conclusion, every homographic solution of the planar n-body problem

is generated by a n-body central configuration in which each point moves on a Keplerian

orbit.

Central configurations are ubiquitous in the study of the n-body problem. Some of the

more important problems in which they arise will be summarized.

It is natural to inquire about the collisions of some subset of particles in the n-body

problem, as this introduces obvious singularities one might wish to either study or avoid.

Central configurations turn out to be the limit configurations in collisions, a property that

holds for a range of exponents for forces which are powers of interparticle distances, not only

that which is derived from the Newtonian potential [Sa1]. More precisely, in the Newtonian

case, if n points in the n-body problem collide simultaneously at a finite time t∗ then the

rescaled position vector q∗ = (t − t∗)−2/3q has as its limit a central configuration with the

same mass vector [Su], [Wn].

Perhaps more surprisingly, a similar phenomenon occurs for expanding gravitational

systems:

Theorem 2 (Saari [Sa2]). If the total energy E =
∑

mi|q̇i|2 +U of a solution of the n-body

problem is positive and the solution exists for t ∈ [0,∞) then either

(maxi,k{|qi(t) − qk(t)|}) /t → ∞ and mini6=k{|qi(t) − qk(t)|} → 0

or

for every i there exists an Ai ∈ R such that |qi| = Ait + O(t2/3).

The first case in Theorem 2 is a pathology that is an interesting topic in itself [Pa], [DH],

[SX], but which is not closely related to central configurations. In the second case, if two

particles have the same constant in the linear term we say they are part of a subsystem.

Each subsystem can then be further divided into groups of masses whose centers of mass
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limit to central configurations around the subsystem’s center of mass. Similar results hold

even in the zero energy case [SH].

Another interesting question in which central configurations arise, introduced by Poin-

caré [Po2] and Birkhoff [B], is the determination of the topology of the n-body problem, i.e.

the cohomology of the common level sets of the energy and angular momentum functions

which are conserved along trajectories. These level sets are often called the integral man-

ifolds, although they are not always manifolds in the strict sense. Central configurations

occur in this context as critical points of the functions defining the integral manifolds [Sm1],

[C], [Ea], [Al1]. One hope in studying the topology of the integral manifolds is that one

can obtain some information about the dynamics. A nice example of this is in the two-

body problem, in which the topology and dynamics were beautifully combined by Moser

[Ms1] in the result that the integral manifolds are diffeomorphic to T0S
2, the unit tangent

bundle of S2, and the trajectories are given by geodesic flow. Recently the cohomology of

the integral manifolds in the planar and spatial three-body problem was completely deter-

mined [MMW]. A much better understanding of the four-body central configurations will

be necessary before such investigations are begun for the four-body problem.

Finally, and possibly most interesting from a mathematical viewpoint, central configu-

rations are the only real landmarks in the study of the dynamics of the n-body problem.

Almost every result in three-body dynamics is related to central configurations. For many of

these applications it is crucial to know about the stability of the configurations to perturba-

tions, which amounts to understanding the linearization of the dynamics about the central

configurations. Perhaps the most striking example of the use of central configurations in

this context is the work of Moeckel on chaotic dynamics in the three-body problem [Mo2]

using blow-up techniques introduced by McGehee [Mc], [Ms2].
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Chapter 3

CLASSIFICATION OF CENTRAL CONFIGURATIONS

Some of the historically and mathematically interesting results on central configurations

will be summarized in this chapter, including the three-body case and a relatively recent

theorem that applies for any n, the perpendicular bisector theorem. Finally, I present two

corollaries of mine to the perpendicular bisector theorem.

Relative equilibria are well understood in the case n = 3 (the n = 2 case is trivial, as all

line segments are similar). Euler and Lagrange solved this case in the 18th century [Eu], [La].

For a given mass vector there are five relative equilibria (up to rotation, dilation, and

translation equivalence). The masses can be arranged in an equilateral triangle, in two

different orders, or they can be collinear in any order. Note the surprising fact that the

equilateral triangle is a central configuration for any choice of positive masses. The spacing

in the collinear cases is given by a polynomial:

(m1 + m3)p
5 − (2m1 + 3m3)p

4 + (m1 + 2m2 + 3m3)p
3

−(m1 + 3m2)p
2 + (2m1 + 3m2)p − (m1 + m2) = 0

where p is the ratio of the distance between the first two points and the distance between

the first and third points, for the case in which the second point is in the middle. These

results can be obtained by relatively straightforward algebra [SM].

The classification problem for the general collinear case (d = 1) was solved by Moul-

ton [Mu] in 1910. He proved that there is a unique equivalence class of central configurations

for any ordering of n masses on a line. If we consider the collinear problem as embedded in

a higher dimensional space, d > 1, than for any mass vector m ∈ R
n
+ there are n!/2 affine

equivalence classes of collinear central configurations. A more modern proof of this result

is contained in a paper of Smale [Sm1].

Cases in which some of the masses are infinitesimal have been studied by several authors

[Hi], [Pe1], [Ho], [G], [Ar], [Ll], and [Mo5]. In particular the results of Xia [X] provide strong
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lower bounds on the number of relative equilibria with certain types of mass vectors. These

methods typically rely on knowledge of the two- and three-body cases, and could be extended

if the four-body case were better understood.

For n > 4, there are many results about highly symmetric configurations, such as nested

regular polygons or regular polygons with a central mass [Hp], [L-F], [Lo], [An], [Br], [Li],

[Kl], [PW], [El], [Ce], [Bu2], [CLN], [F], [Gl], [ZZ]. Equal masses arranged in a regular

polygon with an arbitrary central variable mass are always central configurations; their

stability under perturbations is a difficult topic that has been extensively studied [Ra],

[Mo4], [Ro1]. The historical interest in this subject is partly due to the work of Maxwell on

the rings of Saturn [Ma].

A theorem of Conley and Moeckel, the perpendicular bisector theorem, is useful in

restricting the possible geometries of central configurations. This theorem actually applies

for any n, in R
3 or R

2, but it is most useful for small values of n (n = 3, 4, and 5). For

clarity the theorem will first be stated in the planar case. Note that any two intersecting

lines in the plane determine a pair of open double cones.

Theorem 3 (Perpendicular bisector theorem [Mo3]).

If qi and qj are any two points of a planar central configuration, then the pair of double

cones determined by the perpendicular bisector of qi and qj and the line through qi and qj

must either contain points of the central configuration in each double cone, or have no points

in either of the double cones.

In the spatial case, the line through qi and qj is replaced by any plane through qi and

qj, and the perpendicular bisector is likewise interpreted as the plane perpendicular to the

the line through qi and qj which contains the midpoint of qi and qj . Once the planes are

chosen they determine two three-dimensional double cones, and with these modifications

the theorem still holds.

As a simple example to illustrate the above theorem, take qi = (−1, 0) and qj = (1, 0) so

the two relevant lines would simply be the coordinate axes. Then one cone would consist of

the first and third quadrants and the other cone would be the second and fourth quadrants.

In this case, if there were any points in the interior of the first or third quadrants then there
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would have to be a point in the interior of the second or fourth quadrants.

In the n = 3 case the perpendicular bisector theorem almost immediately implies La-

grange’s result that the only non-collinear central configurations are equilateral triangles.

To see this note that for each pair of points the theorem says that the third point must lie

on the perpendicular bisector of the pair. This means that the distances from each member

of the pair to the third point are equal, and since this is true for every pair all the sides are

equal in length.

One corollary to Theorem 3 is that it is impossible to have an n-body central configura-

tion with exactly n−1 collinear points, for n > 3. The non-collinear point would have to be

on all the perpendicular bisectors of the collinear points, which is impossible for n > 3 since

the bisectors are distinct parallel lines. This result was first found by a more complicated

argument in 1988 [ZY].

Planar four-body central configurations which are not collinear can be classified as either

convex or concave. A concave configuration has one point which is strictly inside the convex

hull of the other three points. A convex configuration does not have a point contained in

the convex hull of the other three points. Another corollary of mine to the perpendicular

bisector theorem is that a concave relative equilibrium for the n = 4 case cannot have an

oblique triangle as its convex hull (i.e. the triangle formed by the three outer masses). This

is easily seen by considering the pairs of masses that would form the two shortest sides of

the outer triangle, and the fact that the intersection of the perpendicular bisectors of these

two pairs intersect outside the triangle.

Just as the perpendicular bisector theorem restricts the n = 3 non-collinear config-

urations to just one possibility, the equilateral triangle, it also eliminates all non-planar

four-body central configurations except the regular tetrahedron. We will see in Chapter

6 that Theorem 3 is useful in the planar four-body case; the corresponding application of

the perpendicular bisector theorem to the spatial five-body case is an intriguing area that

a paper of Schmidt [Sc] begins to explore.
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Chapter 4

FOUR-BODY CENTRAL CONFIGURATIONS

The four-body classification of central configurations is much more difficult than the

three-body case, and in general is unsolved. In the three-body case, the equilateral triangle

is a relative equilibrium for any choice of masses. We will see below that in the n = 4 planar

problem there are no configurations which are central configurations for every mass vector,

although it is true that any n masses arranged in a regular n − 1-simplex in R
n−1 form a

central configuration [Sa1]. Note that Lagrange’s configuration is a special case of Saari’s

result with n = 3; the n = 4 case was actually first found by Lehmann-Filhes in 1891 [L-F].

There are two special cases in which the four-body central configurations are understood.

The limiting case in which one of the four masses goes to zero, often referred to as the

3 + 1 case, has been studied by Gannaway [G] and Arensdorf [Ar], and the case in which

all four masses are equal has been recently classified by Albouy [Al2]. For the equal mass

case there are only four equivalence classes of planar central configurations: the square, an

equilateral triangle with a mass at its center, a collinear configuration, and a particular

isosceles triangle with another mass on its axis of symmetry. This last type of central

configuration, with two distinct pairs of equal interparticle distances, will be referred to as

an isosceles configuration. Note that for the equal mass case all the central configurations

possess at least one axis of symmetry [Al1] under reflections. For comparison with the

generic case it can be more helpful to count the affine equivalence classes; there are 50 affine

equivalence classes of planar central configurations for the equal mass case.

It has been shown [Ku], [Mo1] that the number of four-body central configurations with

given masses is generically finite, but there may be an at most codimension-1 subset of

the space of masses where the number of central configurations is infinite. Recall that

in counting central configurations we actually count their equivalence classes as described

in Chapter 2. This question of the finiteness of the number of central configurations is
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listed by Smale as one of his “Mathematical problems for the next century” [Sm2]. The

generic upper bound given by Moeckel is so large (39 · 7714) that there can be little doubt

that improvements are possible. I conjecture that in fact the number of 4-body central

configurations is finite for any given mass vector. Moeckel also defines the bifurcation set

B in the space of masses to be the complement of the set with the property that in some

neighborhood of each point the number of central configurations is constant, i.e. the set B is

where the number of central configurations changes. Little is known about the structure of

B, although some numerical investigations have been done [Si], [G]. Very recently Moeckel

proved a more general finiteness result that applies to any n bodies in R
n−2 [Mo7]. It also

worth noting in this context that if the assumption of positive masses is eliminated there is

an example of a continuum of central configurations in the five-body problem [Ro2].

The article of MacMillan and Bartky [MB] contains some of the background and tools

relevant to research on the existence of concave relative equilibria in the four-body problem.

Some of their results will be summarized here. The exposition given here will be partially

based on later treatments of the same material, in particular a paper by Williams [Wi]

which generalized some of the techniques to the planar five-body problem. Some of [MB]

was also nicely summarized in [Sc], who extended their techniques to the spatial five-body

problem.

The first step is to recast the equations defining a planar central configuration, so that

the variables are the distances between the particles rather than their coordinates. This not

only reduces the number of variables but also eliminates the rotational and translational

degeneracy of the equivalence classes of central configurations, leaving only the dilational

degeneracy. Dziobek was the first to introduce this approach [D] and exploit its significant

advantages.

Assume that the points of the configuration are not collinear, as the theorem of Moulton

[Mu] mentioned previously covers that case. Consider (2.1) for the coordinates of the first

point of the central configuration, where qi = (xi, yi) and rij = |qi − qj|3:

λx1 =
∑

j 6=1

mj
x1 − xj

r3
1j
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λy1 =
∑

j 6=1

mj
y1 − yj

r3
1j

.

The first point’s equations were chosen for simplicity, but the following manipulations can

be done, mutatis mutandis, for the others.

Now we will change from using the arbitrary parameter λ to r0 defined by λ = Mr−3
0 ;

recall that M =
∑n

i=1 mi. For convenience we will also define R0 = r−3
0 , Rij = r−3

ij . Then

our equations become:
∑

j 6=1

(R1j − R0)(x1 − xj)mj = 0

∑

j 6=1

(R1j − R0)(y1 − yj)mj = 0.

To eliminate the m2 term from these equations, we simply cross-multiply by the respective

coefficients of that term and subtract the two equations. Our result is

−2(R13 − R0)∆4m3 + 2(R14 − R0)∆3m4 = 0

where ∆i is the signed area of the triangle formed by the qj for which j 6= i. We will fix the

signs by the convention that if the points of the triangle are listed in counterclockwise order

and the missing point appended to the end of the list, then the sign of the permutation

taking (1234) to the list is the sign of ∆i. For example, if the four points form a square,

with the points in counterclockwise ascending order, then ∆1 = ∆3 < 0 and ∆2 = ∆4 > 0.

An interesting property of this sign convention is that
∑4

i=1 ∆i = 0. In the non-collinear

case we know that no three of the masses can be collinear, by one of the corollaries to the

perpendicular bisector theorem discussed in Chapter 3, so none of the ∆i are zero. The

absolute value of ∆i will be denoted by Di.

Similarly, from the equations for q2 we can eliminate the m1 terms and obtain

−2(R23 − R0)∆4m3 + 2(R24 − R0)∆3m4 = 0. (4.1)

If we introduce the notation Sij = Rij − R0 then the above pair of equations implies that

S13S24 = S23S14.

This is the stage where the collinear case must be excluded, since the ∆i would be 0 for

every i = 1, . . . , 4. Also notice that if any of the Sij = 0 then the equations obtained by
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permuting the indices of (4.1) imply that all of the Sij are zero, and this is impossible since

four planar points cannot all be the same distance from one another.

Applying the same argument to the rest of the equations yields only one more indepen-

dent equation, so that we have what we will call the consistency equations:

S13S24 = S23S14 = S12S34. (4.2)

These are extremely useful necessary conditions for a four-body central configuration; they

are also sufficient except for the positivity of the masses, which we can check using the

formulae for the mass ratios that follow immediately from the above argument:

mi

mj
=

∆iSjk

∆jSik
(4.3)

where i, j, and k are distinct from one another. Note that the mass ratios are uniquely

determined by the distances and the parameter R0. In all but one case the R0 parameter

is determined by the consistency equations, so that the masses can be determined from the

interparticle distances. The exception is the highly symmetric configuration consisting of

an equilateral triangle with the fourth mass at its center. We will refer to this symmetrical

configuration as the equilateral configuration. In the other cases we can explicitly solve for

R0 from the consistency equations by some elementary algebra:

R0 =
R12R34 − R23R14

R12 + R34 − R23 − R14
=

R23R14 − R13R24

R23 + R14 − R13 − R24
=

R13R24 − R12R34

R13 + R24 − R12 − R34
,

provided that the denominators in the above equations are nonzero. Since we are assuming

that R0 exists and is finite, if one of the above denominators vanishes then the numerator

must be zero as well. A little algebra then shows that there are two pairs of equal adjacent

sides, e.g. if the first equation above was indeterminate then either r12 = r23 and r34 = r14,

or r12 = r14 and r34 = r23. In either case the configuration is an isosceles configuration. In

this case one of the other two expressions for R0 must be used. If all of the above equations

are indeterminate, then there must be two distinct triplets of equal adjacent sides, which is

only possible for the equilateral configuration.
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For the non-equilateral configurations, if the parameter R0 is eliminated the equations

for the mass ratios simplify to:

mi

mj
=

∆i(Rjk − Rjl)

∆j(Rik − Ril)
. (4.4)

These equations for the mass ratios were not presented by MacMillan and Bartky, but

appear in [Sc].

For the equilateral configuration the outer masses must be equal and the ratio of the

inner mass to the outer masses can be any positive number, which can be checked directly

from (4.3). Note that if we set the total mass M =
∑4

i=1 mi = 1 then the masses are

uniquely determined by the mass ratios. The set M = {m ∈ R
4 | ∑4

i=1 mi = 1, mi ≥ 0} is

a tetrahedron, which will be referred to as the mass tetrahedron. The segment of the mass

tetrahedron given by m1 = m2 = m3 will be referred to as the mass core; the fourth mass

has been singled out arbitrarily. Let us also denote the set of affine equivalence classes of

non-collinear planar four-body central configurations by P.

In summary, we have obtained the following:

Theorem 4. Every element of P\{Equilateral configuration} has a unique mass vector in

the interior of M which makes the configuration a central configuration. For the equilateral

configuration the outer three masses must be equal.

The fact that the equilateral configuration, with the fourth mass in the middle, can have

masses anywhere on the mass core leads to various questions, such as what other central

configurations have masses on this segment. Recall from Chapter 2 Dziobek’s description

of central configurations as critical points of a gradient flow on the space S̃ = S/SO(d),

where both S and the flow depend on the masses. It has been shown [Pm] that the critical

point corresponding to the equilateral configuration is nondegenerate for any masses on the

mass core except at one point, where m4/m1 = (81 + 64
√

3)/249. By nondegenerate we

mean that the Hessian of the function U |S̃ determining the gradient flow is nondegenerate.

At this special point on the mass core another family of configurations with masses on

the mass core bifurcates from the equilateral configuration. This new family consists of

isosceles configurations [MS]. The isosceles family is only known to exist locally, near the
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particular mass value mentioned above. However, it seems possible that the masses of this

family include the entire mass core. An intriguing piece of evidence in this regard is the

isosceles configuration discovered by Albouy, which has four equal masses and is presumably

a member of the above family.

Although using the interparticle distances as variables has many advantages, there is a

serious disadvantage to their use in the planar four-body problem, namely that they are not

independent. There is one relation between them, which corresponds to the geometric fact

that the volume V of the tetrahedron formed by the four points must vanish. This relation

is conveniently expressed by the vanishing of the following determinant [Hg], the value of

which we shall denote by P :

P (r12, r23, r34, r14, r13, r24) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 1 1 1

1 0 r2
12 r2

13 r2
14

1 r2
12 0 r2

23 r2
24

1 r2
13 r2

23 0 r2
34

1 r2
14 r2

24 r2
34 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 288V 2. (4.5)

The above formula for the volume of a tetrahedron, which is the three-dimensional ana-

logue of Heron’s formula, dates from at least the 19th century. Analogous formulae give

the volumes of simplices in any dimension; the determinants are known as Cayley-Menger

determinants.
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Chapter 5

CONVEX CENTRAL CONFIGURATIONS

Convex central configurations in the four-body problem are better understood than the

concave case. It is known that for any set of positive masses there is at least one convex rela-

tive equilibrium [MB]. The available evidence suggests that the concave configurations have

a more complicated structure than the convex configurations. Because of its relevance, the

convex case will be summarized here in some detail, closely following the original argument.

A more precise statement of the result in [MB] is:

Theorem 5. Given k0, k12, k34, k13 > 0, there exists a convex central configuration such

that k0 = r0, max(r12, r23, r34, r14) < r0 < min(r13, r24), and the mass ratios are given by

m1

m2
= k12,

m3

m4
= k34,

m1

m3
= k13.

Proof. We will restrict attention in the proof to the convex configurations which are ordered

counter-clockwise as q1, q2, q3, q4. By examining the mass equations in this case one can

determine that for all the masses to be positive the inequalities max(r12, r23, r34, r14) <

r0 < min(r13, r24) must be satisfied. Since we will immediately set r0 = k0 this puts

some restrictions on the interparticle distances. Note that specifying the value of r0 merely

removes the dilational degeneracy.

Consider the situation for fixed r12 < r0, represented in the figure below.

UV

P

FG

Figure 5.1: Starting point of convex construction
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The first and second points of the configuration have been rotated to lie horizontally,

and a semicircle of radius r0 drawn around each of them. The first point is the point on the

left. The two other arcs F and G in the figure are a distance r0 from the the intersection

point P. The region U is defined as the intersection of the interiors of the circles of radius r0

around the second point and the point P and the exterior of the circle of radius r0 around

the first point. The region V is defined similarly with the roles of the first and second points

interchanged.

We will proceed to prove that for every point in the region U there is one point in the

region V such that the four points form a central configuration for some mass vector. In

order for r0 to satisfy the inequalities in the above theorem we must restrict the fourth

point to be in W, the intersection of V and the interior of the circle centered at the third

point with radius r0. We will show that given the position of the third point, in U, we can

find a fourth point, in W, such that S13S24 = S23S14 = S12S34. Recall that Sij = Rij −R0.

Having fixed our first three points, we are given R0, R12, R23, and R13.

Let ρ0 denote the distance from the third point to P. Now fix a positive ρ such that

ρ0 < ρ < r0 and consider the arc AB in W which is a distance ρ from the third point. One

of the consistency equations can be written as (R23−R0)(R14−R0) = (R0−R13)(R0−R24)

in which all the factors in parentheses are positive if the fourth point lies on the interior of

the arc AB. At point A, R24 = R0 and thus the function (R0 − R13)(R0 − R24) is zero. As

the fourth point is moved up the arc AB towards B, this function monotonically increases

since the first factor is constant. Likewise, if we consider the function (R23 −R0)(R14 −R0)

we see that it is zero when the fourth point is at B and increases monotonically as the fourth

point is moved along the arc AB towards A.

So the above consistency equation can be satisfied for any such ρ by a unique fourth point

on the arc AB. Define µ(ρ) = (R23−R0)(R14−R0) = (R0−R13)(R0−R24) to be the common

value of these two functions at such a point. We know that µ(ρ0) = 0 by its definition. Also

dµ
dρ > 0 when ρ = ρ0; to see this, first note that dµ

dρ = (R23 − R0)
dR14

dρ = −(R0 − R13)
dR24

dρ

and either R24 = r−3
24 must decrease or R14 must increase as a function of ρ. By linearizing

about r14 = r24 = r0, it can be shown that at least one of these changes is first order

in ρ. Since r24 and r14 can be constant to first order under a perturbation of the fourth
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U

PW

A

B

FG

Figure 5.2: Convex construction

point only along the line joining the first and second points, which does not intersect W, we

see that dµ
dρ cannot be zero in W and thus must remain positive along the curve of fourth

points satisfying S13S24 = S23S14. The function S12S34 = (R12 − R0)(R34 − R0) decreases

as ρ = r34 increases, and vanishes on the arc where r34 = r0, so there is a unique point in

W where the consistency equations hold.

We now examine the dependence of the masses in the convex case as described above.

Consider any curve CD of positions of the third mass in U that begins from the arc of radius

r0 around the first point and ends on the arc of radius r0 around the second point. For each

point on this curve, we have seen that there is a unique fourth point in V that is a four-body

relative equilibrium. It is clear from the geometry that for any such 1-parameter family of

relative equilibria the areal ratios |∆i/∆j | will be bounded above and below by some positive

numbers since no three of the masses can get arbitrarily close to being collinear. Examining

(4.3) with i = 1, j = 2 we see that the ratio will become infinite at C and zero at D. Thus

there must be at least one point on the curve with m1/m2 = k12. Since the masses are

continuous functions of the distances in U, by varying the curve CD we obtain at least one

arc C1 in U, beginning at P and ending on F, such that the central configuration obtained

by placing the third point on the curve has mass ratio m1/m2 = k12.

For each point on C1 there is a unique corresponding point in V for the fourth point,

and thus there is a corresponding curve in V to C1. By construction, as the third point’s

location on C1 approaches F, the corresponding point in V must approach P. By examining

(4.3) and noting that S14 is limiting to zero in this case we see the ratio m3/m4 goes to zero.

From the symmetry of the argument, as the third point approaches P, the ratio m3/m4 must
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go to infinity. This implies that there is at least one point on C1 such that m3/m4 = k34.

So far it has been shown that for r12 < r0, both fixed, there exists a central configuration

with m1/m2 = k12 and m3/m4 = k34. Consider a family of such configurations as r12 is

decreased to zero while r0 is held fixed. This means the limit of r13/r23 and r14/r24 is

1, which means that in fact each of the distances in these ratios must tend to r0 by the

inequalities r23 < r0 < r13 and r14 < r0 < r24. This means that right side of the equation

S12S34 = S23S14 is limiting to zero, but the S12 term is getting arbitrarily large. This forces

r34 to also limit to r0. From (4.3) we can obtain m1m2

m3m4
= ∆1∆2S34

∆3∆4S12
. Since S34/S12 is going

to zero while the other ratios are bounded, the ratio m1m2/m3m4 limits to zero along with

r12.

Similarly, if we consider what happens when r12 is increased to r0, we find that the ratios

of areas in the mass equations remain bounded and S12 goes to zero while S34 is bounded

away from zero. So m1m2/m3m4 becomes arbitrarily large and there is at least one r12 < r0

such that m1m2/m3m4 = k2
13k34/k12, which in turn implies that m1/m3 = k13 as desired.

This completes the proof of Theorem 5.

Theorem 5 may be summarized by saying that the map from the interparticle distances

of the convex configurations into the interior of the mass tetrahedron M◦ is surjective. This

mapping is well defined by Theorem 4, since the equilateral configuration is not convex.

Note that the proof was essentially topological, relying on knowledge of the behavior of the

masses at the boundaries of the possible convex configurations to infer the surjectivity of

the map on the interior.
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Chapter 6

CANONICAL CONCAVE CONFIGURATIONS

The following theorem gives a canonical way to chose the representatives of equivalence

classes of concave configurations. A configuration is called concave if it has one of its points

strictly inside the convex hull of the other three points. The notation θijk will denote the

angle between the segments ij and jk.

Theorem 6. Every equivalence class of concave planar four-body central configurations has

a representative with outer points 1, 2, 3 such that r12 = 1 ≤ r23 ≤ r13 and the angles of the

outer triangle satisfy θ123 < 90◦, θ132 > 30◦.

Proof. It will be assumed that r12 is one of the shortest of the outer sides of the triangle.

In order to deal with the rotational and dilational symmetries of equivalence classes of

configurations, the line segment from q1 to q2 will be assumed horizontal, length one, and

with q2 to the right of q1. Also, the third point will be assumed to be above the segment

q1q2, and to the right of the perpendicular bisector of q1 and q2. The fourth point q4 will

be in the convex hull of the first three; again there is no loss of generality here since we

are free to reorder the points. Let Q denote the region to the right of and including the

perpendicular bisector of q1 and q2, to the left of the vertical line through the second point,

outside or on the circle of radius one around the second point, and inside the circle of radius

one around the point e which is at unit distance from q1 and q2. However, the point e is

not included in Q. Figure 6.1 shows the region Q.

For a triangle of side lengths l1, l2, and l3, and area A, the circumcenter is at a distance

from each vertex of rC = l1l2l3
4A , known as the circumradius. From our symmetry-breaking

assumptions and the requirement that the masses are positive one can determine from the

mass equations that [MB]

r34 ≤ r14 ≤ r24 ≤ r0 ≤ r12 = 1 ≤ r23 ≤ r13. (6.1)
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1
Q

1

e

Figure 6.1: Region of possible positions of the third point

Once the position of the third mass is chosen, the above inequalities and the perpendic-

ular bisector theorem restrict the position of the fourth point. There are three possibilities

for the allowable positions of the fourth mass, depending on whether the third point is above

or below the diagonal defined by r2
23 = r2

13−r13 +1 in region Q. Two of these are illustrated

in Figure 6.2. If the third point is above the diagonal, let V be the region bounded by the

perpendicular bisectors of the segments 12 and 13, the segment 13, and the arc of radius r12

around the second point. In some cases the segment 13 is not part of the boundary (this is

the case not shown in Figure 6.2). If the third point is below the diagonal, then let V be

the region bounded by the segment 13 and the two perpendicular bisectors of the segments

12 and 13. It can be shown by the perpendicular bisector theorem that the fourth point

must be contained in V.

Note that the circle of radius one around the point e consists of points for which θ132 =

30◦, by an elementary theorem in geometry. On this boundary arc of Q, and on the vertical

line through the second point, the region V consists only of the circumcenter point.
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V

V

Figure 6.2: Regions of possible positions for the interior point
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Chapter 7

AN EXISTENCE THEOREM FOR CONCAVE CENTRAL

CONFIGURATIONS

In this chapter some facts about the existence of concave central configurations are

proved. While they have some interest in their own right, they are also necessary ingredients

for later results.

With the conventions of the preceding chapter, we begin by studying points in the region

Q, which gives us the inequalities r12 = 1 ≤ r23 ≤ r13 < 2 and θ123 < 90◦, θ132 > 30◦. These

conditions on θ123 and θ132, when combined with the condition that r23 ≤ r13, are equivalent

to:

1 < r13 < 2 and





1 ≤ r23 ≤ r13 if 1 < r13 ≤
√

2
√

r2
13 − 1 < r23 ≤ r13 if

√
2 ≤ r13 ≤

√
2 +

√
3

√
r2
13 − 1 < r23 <

√
3

2 r13 +
√

4 − r2
13/2 if

√
2 +

√
3 ≤ r13 < 2.

(7.1)

Definition 2. Labeled triangles with the third point in Q will be called strictly admissible

triangles, and those with the third point in Q̄ will be called admissible.

In particular, the side lengths of any admissible triangle satisfy the inequalities in (7.1).

For such configurations we have an existence theorem. For convenience let us use the

notation RC = r−3
C for the inverse cube of the circumradius. For admissible triangles the

circumradius is in the range [1/
√

3, 1].

The following theorem gives us much of the existence result we desire, although it

sidesteps the thorny issue of concavity.
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Theorem 7. For a strictly admissible triangle, and any R0 satisfying 1 < R0 < RC , there

exists a fourth point for which r34 ≤ r14 ≤ r24 < r0 and such that the four points satisfy the

consistency equations (4.2).

Proof. The strategy of the proof is to first show that there are positive numbers {r12, r23, z34,

z14, r13, z24} satisfying the consistency equations and the planarity condition P = 0. Then

these numbers will be shown to be interparticle distances of a planar configuration of four

points.

First we pick the points of the outer triangle (points 1, 2, and 3) so that (7.1) are

satisfied, and we pick a value of the parameter R0 satisfying 1 < R0 < RC .

Note that the consistency equations (4.2) are equivalent to

R14 = F14(r24, r0) (7.2)

and

R34 = F34(r24, r0). (7.3)

where

F14(r24, r0) ≡ R0 +
S13

S23
(R24 − R0) (7.4)

and

F34(r24, r0) ≡ R0 +
S13

S12
(R24 − R0). (7.5)

In defining the above functions F14(r24, r0) and F34(r24, r0) we are suppressing their

dependence on r13 and r23 since these are fixed parameters throughout the argument. We

will also use the notation f34 = F
− 1

3

34 and f14 = F
− 1

3

14 .

A little algebra together with our assumed inequalities shows that 1 ≤ S13

S23
≤ S13

S12
; at

least one of these inequalities must be strict. We will consider the the interval of R24 values

R0 ≤ R24 ≤ RC . In this interval, F34 ≥ F14 ≥ R24 by definition, with both equalities

holding only at the endpoint R24 = R0.

We will first show that P (1, r23, f34, f14, r13, r24) = 0 for a value of R24 ∈ (R0, RC). At

one endpoint of the interval, R24 = F34 = F14 = R0 < RC . For these values the function
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P (1, r23, r0, r0, r13, r0) can be simplified to:

2r2
0(2r

2
23 + 2r2

13 + 2r2
23r

2
13 − 1 − r4

13 − r4
23) − 2r2

23r
2
13 = 32r2

0D
2
4 − 2r2

23r
2
13.

Recall that D4 is the area of the triangle not containing the fourth point, and that the cir-

cumradius rC of this triangle is r23r13

4D4
. Then it is easy to see that P (1, r23, rC , rC , r13, rC) =

0. Furthermore, since D2
4 > 0 we see that for r0 > rC the value of P must increase, i.e.

P (1, r23, r0, r0, r13, r0) > 0 for r0 > rC .

So P > 0 at one endpoint, and we must show it is negative at the other endpoint, where

F34 ≥ F14 ≥ R24 = RC (with at least one strict inequality). For this we need the following

lemma:

Lemma 1. For r34 ≤ r14 ≤ r24 ≤ r12 = 1 ≤ r23 ≤ r13, ∂P/∂r14 > 0 and ∂P/∂r34 > 0.

Proof. We simply explicitly compute the derivatives and regroup the terms as below:

∂P/∂r14 = 4r14((r
2
13 − 1)(r2

24 − r2
34) + r2

23(r
2
34 + r2

13 − r2
23 + r2

24 + 1 − 2r2
14))

∂P/∂r34 = 4r34((r
2
13 − r2

23)(r
2
24 − r2

14) + (r2
14 + r2

13 − 1 + r2
24 + r2

23 − 2r2
34)).

Our assumptions imply that every expression in parentheses in the above formulae is non-

negative, and at least one term must be positive, so the partial derivatives are positive.

At the endpoint we are considering, only the third and fourth arguments could have

changed from the arguments in the equation P (1, r23, rC , rC , r13, rC) = 0, and at least one

of them decreased, so P (1, r23, f34, f14, r13, rC) < 0 at this endpoint.

Since P (1, r23, f34, f14, r13, r24) is a smooth function of r24 for fixed r0, the intermediate

value theorem ensures that there is at least one zero of P (1, r23, f34, f14, r13, r24) for some

r24 in the interior of the desired interval. Let us call the arguments of the zero with smallest

r24, zij , so that z34 = f34(z24, r0), z14 = f14(z24, r0), and z24 = r24.

Note that the zij values are all positive and real by construction. If we solve the equation
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P (1, r23, z34, z14, r13, z24) = 0 for z34 we find that

z2
34 =

1

2

(
r2
23 + r2

13 − 1 + z2
24 + z2

14 + (r2
13 − r2

23)(z
2
24 − z2

14) (7.6)

±4D4

√
(1 + z24 + z14)(1 − z24 + z14)(1 + z24 − z14)(−1 + z24 + z14)

)
.

The right hand side of this equation must also be real and positive. Within the square

root, our assumptions guarantee that every term in parentheses is positive except the last

term, (−1 + z24 + z14). So this term must be non-negative. Also note that since z34 < z24

by construction, the smaller root in (7.6) is the correct one, since the sum of the first four

terms are already greater than z2
24.

To see that the zij actually arise from a configuration of points in the plane, we consider

a construction of such a configuration. The outer triangle is given. The circles of radius z14

and z24 around points 1 and 2, respectively, intersect in one or two points since we know

that z24 + z14 ≥ 1. Since the possible r34 must equal one of the values in (7.6), z34 must be

one of these possible r34. Figure 7.1 shows a typical case; the length of the dashed lines in

the figure would be the two possible r34 values, of which z34 is the smaller as noted above.

r13 r23

r14 r24

r14 r24

Figure 7.1: Example of possible r34 values

This concludes the proof of Theorem 7.

The rest of this chapter consists of ingredients for the following theorem.
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Theorem 8. For a strictly admissible triangle with r2
23 ≥ r2

13 − r13 + 1 and for r0 ∈ (rC , 1),

there is a unique concave central configuration for which the triangle is the outer triangle

with parameter r0. As the parameter r0 is varied from rC to 1, the fourth point traces out

a simple curve from the circumcenter to the equilateral point (r14 = 1, r24 = 1).

For a strictly admissible triangle with r2
23 < r2

13 − r13 + 1 there exists an rI ∈ (rC , 1)

such that for each r0 ∈ (rC , rI) there is a unique concave central configuration for which

the triangle is the outer triangle with parameter r0. Furthermore, in the limit r0 → rI the

fourth point of the configuration is collinear with the first and third points. As the parameter

r0 is varied from rC to rI , the fourth point traces out a simple curve.

In both cases the position of the fourth point is a smooth function of r0, r23, and r13 for

r23 and r13 satisfying (7.1) and r0 ∈ (rC , 1) or r0 ∈ (rC , rI).

The proof of this theorem will be deferred until the end of the chapter, after all the

necessary tools have been assembled.

Lemma 2. For a given strictly admissible triangle and parameter r0 such that rC < r0 < 1,

there is at most one concave planar central configuration.

Proof. Recall from the proof in Theorem 7 that we can find such central configurations

by varying r24 in the interval (rC , r0) and finding zeros of P (1, r23, f34, f14, r13, r24). Since

f14 and f34 are monotonically increasing as functions of r24, if there were two solutions

corresponding to concave configurations one of them would have larger values of r24, r14,

and r34 than the other. This in turn would imply that the values of D1, D2, and D3 would

all be larger in one of the solutions, since ∂Di/∂rj4 = (r2
k4 +r2

jk−r2
j4)/(8Dirj4), (i 6= j 6= k),

which is greater than zero for a concave configuration in which rj4 < rjk. But since the outer

triangle is fixed, we must have D1 + D2 + D3 = D4 be constant, which is a contradiction,

so there could not be two concave central configurations with the same outer triangle and

value of r0.

The following simple lemma will be used several times:
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Lemma 3. For an admissible triangle with r23 6= 1,

lim
r0→1

z24 = lim
r0→1

z14 = 1.

Proof. This can be seen in many ways, but perhaps the simplest is to examine the original

consistency equations (4.2). With our conventions it is immediate that limr0→1 S12 = 0.

Since z34 is bounded away from 0 for a fixed third point in the interior of Q, all the terms

in (4.2) must have zero as their limit. Furthermore, S13 and S23 are bounded away from

zero (since r23 > 1), so limr0→1 S24 = limr0→1 S14 = 0, which is equivalent to the conclusion

of the lemma.

There is a corresponding lemma for the other endpoint of r0 values:

Lemma 4. For an admissible triangle

lim
r0→rC

z24 = lim
r0→rC

z14 = rC .

Proof. From the construction in the proof of Theorem 7 it is clear that limr0→rC
z24 =

rC . Examining the equations (4.2) we see that limr0→rC
S34 = limr0→rC

S14 = 0 since

limr0→rC
S24 = 0 and the terms S12 and S23 are bounded away from zero for a fixed outer

triangle.

The configurations constructed in Theorem 6 are central configurations if their masses

are positive. As described previously, a concave configuration which satisfies the consistency

equations and our conventions will have positive masses if and only if the inequalities (6.1)

are satisfied. These results simply follow from careful examination of (4.3). The last three

relations of (6.1) hold by assumption, and the first three follow immediately by the previous

construction. However, we must ensure that the configurations obtained are concave. In

fact, the configurations will not always be concave if r2
23 < r2

13 − r13 + 1; the lemmas below

will elucidate this point in more detail.

We also need to know something about the regularity of the functions zij .

Lemma 5. For a planar solution to the consistency equations satisfying the conditions in

Theorem 7 which is sufficiently close to concave,

∂

∂r24
(P (1, r23, f34, f14, r13, r24)) > 0,
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and so z24(r13, r23, r0) is a smooth function.

Proof. For i = 1, 2, 3 we have

∂P

∂ri4
|P=0 = −64ri4∆i∆4 (7.7)

from the investigations of Dziobek [D]. If the solution corresponds to a concave configura-

tion, ∆i < 0, and we can compute

∂

∂r24
(P (1, r23, f34, f14, r13, r24)) =

∂P

∂r24
(1, r23, f34, f14, r13, r24) +

∂P

∂r34

∂f34

∂r24
+

∂P

∂r14

∂f14

∂r24
=

64D4(r24D2 + r34D3
S13r

4
34

S12r4
24

+ r14D1
S13r

4
14

S23r4
24

) > 0.

Otherwise, the only ∆i which could be positive is ∆2, and it is zero for a configuration on

the border of concavity. This means that if the configuration is sufficiently close to concave,

the terms in the above expression will dominate and ∂P
∂ri4

|P=0 > 0.

When the distances of the third point satisfy r2
23 < r2

13 − r13 + 1, which corresponds to

the third point being below the diagonal in Figure 6.2, the configuration must cease to be

concave before r0 = 1. This follows from Lemma 3; the fourth point lies outside the convex

hull of the first three points for r0 sufficiently close to 1. But when r2
23 ≥ r2

13 − r13 + 1 we

must examine the curve of solutions in more detail.

Lemma 6. For admissible outer triangles with r12 = 1, r13 > 1, and r2
23 ≥ r2

13 − r13 + 1,

the planar solutions of the consistency equations sufficiently close to R0 = R14 = R24 = 1

with R0 < 1 have θ214 < 60◦.

Proof. The distances r23 and r13 of the outer triangle can be considered as parameters for

the following argument (r12 is always equal to 1). The independent variables are R0, R24,

and R14. The last distance r34 could then be determined by choosing the root of the

planarity condition P = 0 with the smallest value of r34. It is easy to check that r34 is a C1

function on the relevant domains. The consistency equations can be written as
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g1(R0, R14, R24) = 0, g2(R0, R14, R24) = 0 (7.8)

where

g1(R0, R14, R24) = S23S14 − S12S34 (7.9)

and

g2(R0, R14, R24) = S23S14 − S13S24. (7.10)

The Jacobian of the functions g1 and g2 is easily calculated:

D(g1, g2) =
 (1 − R23 + R34 − R14) −(R0 − R23 − (R0 − 1)∂R34

∂R14
) (R0 − 1)∂R34

∂R24

−(R23 − R13 + R14 − R24) −(R0 − R23) (R0 − R13)


 .

At the solution R0 = R14 = R24 = 1 this reduces to

D(g1, g2)|(R0=R14=R24=1) =


 (R34 − R23) (R23 − 1) (0)

(R13 − R23) (R23 − 1) (1 − R13)


 . (7.11)

Let us denote this Jacobian by J(1,1,1).

It is easy to see that D(g1, g2) has rank 2 for any relevant values of the arguments; for

instance, the fact that R34 > R23 and 1 > R13 is sufficient. Thus there is a smooth curve

L of solutions near (1, 1, 1). The tangent of L at (1, 1, 1) is simply the kernel of J(1,1,1). A

little linear algebra yields

ker(J(1,1,1)) =

span((1 − R23)(1 − R13), (R34 − R23)(1 − R13), (1 − R23)(R34 − R13)).
(7.12)

Since none of the components of a kernel vector are zero, any of the quantities R0, R14,

or R24 could be chosen as a parameter for L. We will use R14 as the parameter, and let

Z24(R14) denote the value of R24 along the curve L. The explicit dependence on R14 will

often be dropped. In order for nearby solutions to have θ214 < 60◦, they must satisfy the

inequality z2
24 < z2

14−z14+1. That inequality is equivalent to dZ24/dR14 > 1/2 for solutions

sufficiently close to R0 = R14 = R24 = 1.
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It is easy to compute from the above information that

dZ24

dR14
= (

1 − R23

1 − R13
)(

R34 − R13

R34 − R23
) (7.13)

at the solution R0 = R14 = R24 = 1.

Note that

(
Z34 − R13

Z34 − R23
) ≥ 1, (7.14)

where Z34 is the value of R34 on L determined by R14 and Z24. The inequality (7.14) follows

from r23 ≤ r13, so
dZ24

dR14
|(R0=R14=Z24=1) ≥ (

1 − R23

1 − R13
). (7.15)

It will be shown that (1−R23

1−R13
) > 1/2. First the case in which r2

23 = r2
13 − r13 + 1 will be

proved. We consider r13 as a parameter. It is easy to see that limr13→1(
1−R23

1−R13
) = 1

2 . In fact

that is the infimum of (1−R23

1−R13
) for r13 in the interval (1, 2). To see this first observe that

the inequality (1−R23

1−R13
) > 1

2 is equivalent to 0 < 1 + R13 − 2R23. Since this equality will be

used in later chapters as well we will isolate it as a lemma:

Lemma 7. For points in Q with r2
23 = r2

13 − r13 + 1, 1 + R13 − 2R23 > 0.

Proof. Substituting the expression for r23 into the right hand side of the inequality and

taking the derivative with respect to the parameter r13 we obtain

3(−r−4
13 + (2r13 − 1)(r2

13 − r13 + 1)−5/2)

> 3(−r−4
13 + (2r13 − 1)r−5

13 )

= 3r−5
13 (r13 − 1)

> 0.

(7.16)

The first inequality follows from the assumption that r23 < r13 and the last inequality from

the assumption that r13 > 1. Since the function 2R23(r13) − R13 is decreasing in the range

we are considering, and equal to 1 in the limit r13 → 1, it satisfies the desired inequality.

To obtain the result for r2
23 > r2

13 − r13 + 1, we can simply note that (1−R23

1−R13
) is a

monotonically increasing function of r23 and a decreasing function of r13.

This completes the proof of the lemma.
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Now it will be shown that the configurations obtained in the proof of Theorem 7 are

always concave if r23 ≥ r2
13 − r13 + 1. Lemma 6 ensures that the curve of solutions parame-

terized by R0 starts from R0 = R14 = R24 = 1 with the angle of its tangent line greater than

60 degrees relative to the segment 12. The next lemma shows that the angle of the tangent

line never becomes exactly 60 degrees, which means that θ214 ≤ 60◦. This implies that the

configurations stay concave since θ213 ≥ 60◦ for configurations with r23 ≥ r2
13 − r13 + 1.

Lemma 8. For a strictly admissible triangle in which the third point is above the diagonal,

i.e. r2
23 ≥ r2

13 − r13 + 1, there is a curve defined by the fourth point of the planar solutions

of the consistency equations as the parameter R0 is varied. The angle of the tangent line

relative to the segment 12 is never equal to 60 degrees at any concave solution.

Proof. The condition on the angle of the tangent is equivalent to

dr14/dr0

dr24/dr0
6= r24(

√
3(r2

24 − (1 + r2
24 − r2

14)
2/4) + 1

2(1 − r2
24 + r2

14))

r14(
√

3(r2
24 − (1 + r2

24 − r2
14)

2/4) − 1
2(1 + r2

24 − r2
14))

. (7.17)

This inequality is obtained by briefly reintroducing coordinates and substituting the inter-

particle distances into the condition on the angle of the tangent in these coordinates. We

define coordinates by setting the coordinates of the first point equal to (-.5,0), the coor-

dinates of the second point to (.5, 0), and requiring that the y-coordinates of the third

and fourth points are positive. Then r2
14 = (x + .5)2 + y2 and r2

24 = (x − .5)2 + y2, where

(x, y) are the coordinates of the fourth point. The desired condition on the tangent angle

is equivalent to dx
dy 6= 1√

3
. Converting this back into the rij variables gives the condition

dx

dy
=

(dr14

dr24
r14 − r24)(

√
r2
24 − (1 + r2

24 − r2
14)

2/4)

r24 − (1 + r2
24 − r2

14)(2r24 − 2dr14

dr24
r14)/4

6= 1√
3
. (7.18)

This is equivalent to (7.17) when the denominator is not zero. If the denominator is zero,

that is still okay since then dy
dx = 0 6=

√
3. The denominator and numerator cannot be

zero simultaneously. If the numerator is equal to zero, then dr14

dr24
= r24/r14 since the second

factor in the numerator is actually equal to y, which is always positive. But in that case,

the denominator would equal r24, which cannot be zero.

We will show that the right hand side of (7.17) has a range contained in (−∞,−1)∪(2,∞)

while the left hand side is always in (−1, 2).
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If the complicated expression on the right hand side of (7.17) is positive then it is always

greater than 2r24

r14
for 1/2 < r14 ≤ r24 < 1. To prove that, note that the denominator must

be positive so we can cross-multiply to obtain the equivalent inequality

(r2
14 − r2

24) + (2
√

3y − 3) < 0, (7.19)

since y <
√

3/2 the last term in parentheses in (7.19) is negative and the first term is

non-positive. Here we have again used the fact that y =
√

r2
24 − (1 + r2

24 − r2
14)

2/4.

If the right hand side of (7.17) is negative, then it will be less than −r24/r14 (which in

turn is less than or equal to −1) if

r2
14 − r2

24 + 2
√

3y > 0. (7.20)

Let us denote the left hand side of (7.20) by h(r14, r24). Since ∂h/∂r14 = r14(2+
√

3(1+r2
24−

r2
14)/y) is positive for the relevant values of r14 and r24 we can check the boundary of the

set of possible r14 and r24 to find the minimum of h. The lines r14 = r24, r2
24 = r2

14−r14 +1,

and r14 = 1 + r2
24 −

√
3r24 suffice for this computation; note that the last two correspond to

θ214 = 60 degrees and θ124 = 30 degrees respectively. It is easy to compute that h > 0 on

all of those lines; in fact the minimum of h is 1.

We need to show that dr14

dr24
< 2, or dR14

dR24
< 2( r24

r14
)4. Throwing out the factor (r24

r14
)4, the

stronger inequality dR14

dR24
< 2 will be proved. We will also see that dR14

dR24
> −1 shortly.

To be in the kernel of D(g1, g2) the ratio of the differentials dR14 and dR24 must satisfy:

dR14/dR0

dR24/dR0
=

((1 − R23 + R34 − R14)(R0 − R13) + ∂R34

∂R24
(R23 − R13 + R14 − R24)(R0 − 1))

((1 + R34 − R13 − R24)(R0 − R23) − ∂R34

∂R14
(R23 − R13 + R14 − R24)(R0 − 1))

.

(7.21)

The partial derivatives of R34 will be obtained from the planarity condition. It will be

shown below that ∂R34

∂R14
< 0 and ∂R34

∂R24
< 0. This makes it easy to see that dR14

dR24
> −1 since if

the right hand side of (7.21) is negative, it must be of the form A−B
C+B with A,B,C > 0 and

B > A.

The denominator of the right hand side of (7.21) is always positive in our domain so we

can cross-multiply the desired inequality dR14

dR24
< 2 to get the equivalent condition:



34

0 < (R23 + R14 − R13 − R24)(R0 − 1)(−2∂R34

∂R14
− ∂R34

∂R24
)+

2(R0 − R23)(1 + R34 − R13 − R24) − (R0 − R13)(1 + R34 − R23 − R14)
(7.22)

To prove (7.22) we will show the first line of the left hand side is non-negative and the

second line is positive. In the first term, everything is positive by assumption except the

partial derivatives. Since dR34

dR24
= dr34

dr24
( r24

r34
)4 and dR34

dR14
= dr34

dr14
( r14

r34
)4, we can compute the sign

of these derivatives for concave configurations by simplifying the expression obtained from

solving P = 0 for r34 and then taking a derivative:

∂r34

∂r24
= r24

2r34
(1 + r2

13 − r2
23 − D4/D3(1 + r2

14 − r2
24))

= r24

r34
(r13 cos θ213 − D4/D3r14 cos θ214)

= r24r13

r34 sin θ214 (sin θ214 cos θ213 − sin θ213 cos θ214)

= − r24r13

r34 sin θ214 (sin θ213 − θ214)

= −D2/D3.

(7.23)

To obtain the above result the law of cosines, Heron’s formula, and the formulae D4 =

r13 sin θ213/2 and D3 = r14 sin θ214/2 are used along with some trigonometric identities.

A very similar calculation yields

∂r34

∂r14
= −D1/D3. (7.24)

The second line in (7.22) can be rearranged as

2(R0 − R23)(1 + R34 − R13 − R24) − (R0 − R13)(1 + R34 − R23 − R14)

= (R0 − R23)(1 + R34 − 2R13 − 2R24 + R23 + R14)−
(R23 − R13)(1 + R34 − R23 − R14)

≥ (R0 − R23)(1 + R34 − 2R13 + R23 − R14)−
(R23 − R13)(1 + R34 − R23 − R14)

= (R0 − R23)(1 − R13) + (R23 − R13)(R0 − 1)+

(R34 − R14)(R0 + R13 − 2R23).

(7.25)

The inequality follows from −2R24 + R14 ≥ −R14. Only the last term in parentheses could

be negative. However, simply note that R0+R13−2R23 > 1+R13−2R23. From Lemma 7 we
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already know that the latter function is positive on the diagonal, and since 1 + R13 − 2R23

is monotonically increasing as a function of r23 it is positive everywhere in Q above the

diagonal as well, which completes the proof of Lemma 8.

Proof of Theorem 8. This theorem is basically a consequence of the earlier Lemmas in this

chapter.

For the outer triangles with r2
23 ≥ r2

13 − r13 + 1, we know from the analysis near the

equilateral point with r14 = 1 and r24 = 1 that the fourth points of the solutions form

a smooth curve L whose tangent angle is always greater than 60 degrees relative to the

segment 12. Lemma 8 ensures that this tangent angle remains greater than 60 degrees.

This in turn implies that the solution curve cannot become non-concave by leaving the

region V on the line 13 or the boundary r24 = 1 since θ214 < 60◦(c.f. Figure 6.2). Since L
is both closed and open in V it must end somewhere on the boundary of V. Note that it is

impossible for z24 = z14 for r13 6= r23 except for z24 = z14 = z34 = r0 = rC , by inspection

of the consistency equations. Likewise the curve cannot hit the boundary where r14 = r34

except at the circumcenter. So the curve must end at the circumcenter.

The situation is a little different when r2
23 < r2

13 − r13 + 1. There are concave solutions

near the circumcenter where r14 = rC and r24 = rC , and we know that the solutions

obtained in Theorem 7 leave the region V at some parameter value r0 = rI . It is shown in

Chapter 8 that this parameter value is continuous as a function of r23 and r13. That proof

also guarantees that the curve of solutions cannot re-enter the region V. Note that again it

is impossible for the curve to hit the lines defined by r24 = r14 or r14 = r34 except at the

circumcenter, so at r0 = rI the fourth point is collinear with points 1 and 3.

In either case it is easy to see that L is a simple curve since at a self intersection point

there would be two values of r0 for the same configuration, which is impossible away from

the equilateral point.
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Chapter 8

BORDER CONFIGURATIONS

In this chapter the continuity of RI is proved on the relevant domains. Recall that this

is the value of the parameter R0 at which points 1, 4, and 3 are collinear.

Definition 3. Let w24(r23, r13, r14) =

√
1 + r2

14 − 2r14(
1+r2

13
−r2

23

2r13
).

Definition 4. Let w34(r13, r14) = r13 − r14.

As before we will use the notation W24 = w−3
24 and W34 = w−3

34 . Note that (
1+r2

13
−r2

23

2r13
) =

cos θ213.

Definition 5. Let F1 = W34−R13W24

1+W34−R13−W24
and F2 = W34−R23R14

1+W34−R23−R14
.

Definition 6. Let F (r23, r13, r14) = F1 − F2.

Note that R0 = F1 = F2 is the condition for the consistency equations to be satisfied for

the fourth point on the boundary of the exterior triangle.

Definition 7. Let Ω be the set of (r23, r13, r14) ∈ R
3
+ for which 1 < r2

23 < r2
13 − r13 + 1,

r2
13 < 1 + r2

23, and r13/2 < r14 < 1
2 cos θ213

.

More explicitly, the variables in Ω must satisfy the conditions 1
2 < r13

2 < r14 < 1
2 cos θ213

≤
1 < r23 < r13 < 2 as well as (r2

13−1) < r2
23 < r2

13−r13 +1. The condition on r23 corresponds

to the third point being below the diagonal in the region Q (cf. Figure 6.2).

Note that the denominators of both F1 and F2 are always positive on the domain Ω.

Definition 8. Configurations in which three points are collinear will be referred to as border

configurations.

Definition 9. Let Π(Ω) be the projection of Ω onto its first two coordinates. I.e. Π(Ω) is the

set of (r23, r13) satisfying the inequalities 1 < r23 < r13 < 2 and (r2
13−1) < r2

23 < r2
13−r13+1.
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The inequalities in the above definitions are somewhat redundant, in order to supply

the reader with all the relevant relationships.

Theorem 9. The set F = 0 in the domain Ω can be written as the graph of a continuous

function Y14(r23, r13) over Π(Ω).

Proof. First we will show that there is at least one zero of F in Ω for any fixed r13 and r23.

We simply compute the values at the endpoints, and find that

F (r23, r13,
r13

2
) =

8R13 − R13W24

1 + 7R13 − W24
− 8R13

=
R13(8 − W24 − 8(1 + 7R13 − W24))

1 + 7R13 − W24

= −7R13(8R13 − W24)

1 + 7R13 − W24
< 0

and

F (r23, r13,
1

2 cos θ213
) =

W34 − R13R14

1 + W34 − R13 − R14
− W34 − R23R14

1 + W34 − R23 − R14

=
(R23 − R13)(R14 − 1)(W34 − R14)

(1 + W34 − R13 − R14)(1 + W34 − R23 − R14)
> 0

on Ω.

Next we compute the derivative of F with respect to r14, at F = 0, in order to use the

implicit function theorem:
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dF
dr14

|F=0 = 3(1 + W34 − R13 − W24)
−1(1 + W34 − R23 − R14)

−1

[ w−4
34 (R0 − 1)(R23 + R14 − R13 − W24)

+ r−4
14 (R0 − R23)(1 + W34 − R13 − W24)

− w−5
24 (r14 − cos θ213)(R0 − R13)(1 + W34 − R23 − R14) ]

= 3(1 + W34 − R13 − W24)
−1(1 + W34 − R23 − R14)

−1

[ w−4
34 (1 + W34 − R23 − R14)

−1(R14 − 1)·

(1 − R23)(R23 + R14 − R13 − W24)

+ r−4
14 (R14 − 1)−1(W34 − R23)(1 − R13)(W24 − 1)

− w−5
24 (W34 − W24)

−1(r14 − cos θ213)·

(W34 − R23)(1 − R13)(W34 − R14) ] .

(8.1)

In order to obtain the last line of (8.1) we have used substitutions derived from the

equation F1 = F2. As noted above, R0 is the common value of F1 and F2 on the set F = 0.

For the term with the coefficient r−4
14 , the substitution R0 = F1 is used, and for the term

with the coefficient w−5
24 the substitution R0 = F2 is used. Then the resulting identity can

be verified by expanding and rearranging

(W34 − R13W24)(1 + W34 − R23 − R14) − (W34 − R23R14)(1 + W34 − R13 − W24) = 0

which is obtained by cross-multiplying the equation F1 = F2 by its denominators.

We will now show that (8.1) is positive on the domain Ω we are interested in. Every

term in parentheses has been written so that it is positive on this domain, which makes

it clear that the first two terms within the brackets are positive and the third is negative.

We will see that the sum of the second and third terms is positive. After factoring out the

common factor of −(W34 − R23)(1 − R13) we are left with the expression

− (W24 − 1)

r4
14(R14 − 1)

+
(r14 − cos θ213)(W34 − R14)

w5
24(W34 − W24)

. (8.2)
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After factoring out some positive terms and clearing some fractions, the sign of (8.2) is

determined by the sign of

−r2
14(1 − w3

24)(w
3
24 − w3

34) + w24(r14 − cos θ213)(1 − r3
14)(r

3
14 − r3

34). (8.3)

Now let us make a change of variables from (r14, r13, r23) to (r14, r13, α), where α =

cos θ213. Then w24 is a function of r14 and α, whereas w34 is function of r14 and r13. Let us

denote the function of these arguments in (8.3) by G(r14, r13, α).

In our new variables, the inequalities defining Ω can be written as 1
2 < α < 1√

2
, 2α <

r13 < 1
α , and r13

2 < r14 < 1
2α .

A simple computation yields that

∂G

∂r13
= 3(r13 − r14)

2(r2
14 + w24(1 + r14)(α(1 − r14 + r2

14) − r14)) (8.4)

which will always be positive if G1 = r2
14 + w24(1 + r14)(α(1 − r14 + r2

14) − r14) is positive

on Ω.

Since ∂G1

∂α = (1 + r2
14(2 + 2r14 + r3

14)− 3α(r14 + r4
14))/w24, the sign of ∂G1

∂α is determined

by the sign of

G2(r14, α) = 1 + r2
14(2 + 2r14 + r3

14) − 3α(r14 + r4
14).

It is easy to see that ∂G2

∂α < 0, so to compute a lower bound for G2(r14, α) we can examine

G2(r14, 1/
√

2).

Now if we look at ∂G2

∂r14
(r14, 1/

√
2) we get a quartic in r14:

q(r14) = −3
√

2

2
+ 4r14 + 6r2

14 − 6
√

2r3
14 + 5r4

14 (8.5)

and the only real roots of this quartic occur at r14 less than 1/2. There are many ways to see

this, but one elementary way is to notice that the second derivative of q is 12(5r2
14−3

√
2r14+

1) which is always positive, and since dq
dr14

|r14= 1

2

= (25−9
√

2)/2 > 0 and q(1
2) = 61−36

√
2

4 > 0

the polynomial q is positive for all r14 > 1
2 .

Thus the sign of ∂G2

∂r14
is positive on Ω. So the minimum of G2 occurs at r14 = r13/2 and

α = 1/
√

2. This lets us compute G2 ≥ G2(r13/2, 1/
√

2) > G2(1/2, 1/
√

2) = 57−27
√

2
32 > 0.

So ∂G1

∂α > 0, which implies that G1(r14, α) > G1(r14, 1/2).
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We now need to show that G1(r14, 1/2) = r2
14+(1+r14)

√
1 − r14 + r2

14(1−3r14+r2
14)/2 is

always positive on the interval (1
2 , 1). The argument is by contradiction. If G1(r14, 1/2) = 0

then the following polynomial p(r14) would also be zero at the same value of r14

p1(r14) = (1 − r14)
2(1 − 3r14 − 2r2

14 + 5r3
14 − 2r4

14 − 3r5
14 + r6

14).

This is obtained by rearranging, squaring, and simplifying the equation G1(r14, 1/2) = 0.

Let p(r14) = 1 − 3r14 − 2r2
14 + 5r3

14 − 2r4
14 − 3r5

14 + r6
14. Now we compute that d2p

dr2

14

=

−4 + 30r14 − 24r2
14 − 60r3

14 + 30r4
14. Computing a few values of the quartic d2p

dr2

14

:

r14 −1 0 1
3

1
2 2 3

d2p
dr2

14

|r14
32 −4 40

27 −5
8 −40 680

shows that there are four real roots of the second derivative outside the interval [12 , 1] so

d2p
dr2

14

< 0 in that interval. Since dp
dr14

|r14= 1

2

= −3 we also have that dp
dr14

< 0 on the interval.

Finally, since p(1
2) = −37/64 < 0, we see that p cannot be zero in the interval [12 , 1]. So p1

is also never zero in the interval, which is a contradiction.

So G1 is positive on Ω, which implies that ∂G
∂r13

is positive on the domain Ω. So G will

be less than its values on the boundary of Ω with largest r13, which is when r13 = 2r14. It is

easy to see from (8.3) that G ≤ 0 at those points since w34 = r14, so it must be negative on

the interior of the domain Ω. This in turn implies that dF
dr14

|F=0 > 0 so there is exactly one

zero of F for each (r23, r13) ∈ Π(Ω) . The implicit function theorem then lets us describe

the set F = 0 as the continuous graph of Y14(r23, r13) over Π(Ω).

Since R0 = F1 = F2 on the set F = 0, Theorem 9 implies that there is a function

RI(r23, r13) which is continuous in Π(Ω), and such that for R0 = RI(r23, r13) there is a

configuration satisfying the consistency equations with the fourth point collinear with first

and third points.

We will also need to understand the behavior of the function RI on the boundary of the

region Π(Ω).
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The easiest case is when r2
13 = r2

23 + 1. Here the required interval for r14 shrinks to

r13/2 = rC , which means

lim
r13→

√
r2

23
+1= 1

α

Y14 = RC . (8.6)

This in turn means that we can simply extend the value of RI to be RC on these boundary

points.

The next type of boundary point we will examine is a point p0 = (r23, r13) such that

r23 = 1 and r13 6= 1. As one would hope and expect, as these isosceles configurations are

approached the limit of Y14 equals its value in the isosceles case ((r13/2)
−3 = 8R13), as the

following lemma shows.

Lemma 9. limp→(1,r13) Y14 = 8R13 for r13 6= 1 and p ∈ Π(Ω).

Proof. Let us write the components of p as (r̃23, r̃13) in coordinates (r23, r13). It has already

been noted that F (r̃23, r̃13, r̃13/2) < 0 (in the beginning of the proof of Theorem 9). Now

it will be shown that F (1 + ǫ2, r̃13, r̃13/2 + ǫ + O(ǫ2)) > 0 for sufficiently small ǫ, which

implies the lemma since for each fixed r̃23 and r̃13 there is only one zero of F in the interval

(r̃13/2,
1

2 cos θ213
).

Instead of using ǫ, let us work in the capital variables (the inverse cubes) with R̃23 =

1−E23 and R14 = 8R̃13 −E14. Then we have W34 = 8R̃13 + E14 + O(E2
14) and F2 becomes

2E14 + 8R̃13E23 − E14E23 + O(E2
14)

2E14 + E23 + O(E2
14)

.

If we let E14 =
√

E23, then F2 = 1 + O(E14) and since F1 > 1 (even at E14 = 0) we

have F > 0 for sufficiently small E14. So for sufficiently small E14 there will be a zero

of F for R14 in the interval (8R̃13, 8R̃13 + E14). If we choose ǫ = r̃4
13E14/48 we have

F (1 + ǫ2, r̃13, r̃13/2 + ǫ + O(ǫ2)) > 0 as desired.

The penultimate category of boundary point consists of p0 for which α = 1/2, or equiva-

lently when r2
23 = r2

13−r13+1. We have already examined this case from a somewhat different

perspective, in Lemma 8. The calculations in that lemma suggest that limp→p0
Y14 = 1. The

following lemma makes that intuition precise.
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Lemma 10. For r13 6= 1, limp→p0
Y14 = 1, where p0 = (

√
r2
13 − r13 + 1, r13).

Proof. Recall that for each p = (r23, r13) we define Y14 as the unique value of r14 ∈
(r13/2, 1/2α) for which F (r23, r13, r14) = 0.

In order to examine where F changes sign, we expand around the point where R14 =

W24 = (2α)3, writing R14 = (2α)3+E14 = 1+Eα+E14 and W24 = (2α)3+E24 = 1+Eα+E24.

For a border configuration it is easy to show that in fact 1 + Eα + E24 = 1 + Eα + E14/2 +

O(E2
14).

Now consider the sign of F (r23, r13, 1 + Eα + E14). After clearing the positive denomi-

nators, the sign of F is determined by

Eα(R23 − R13)(W34 − 1 − 3E14/2 − Eα)

−E14(W34(R13 + 1 − 2R23) + (R23 + R23R13 − 2R13))/2

+O(E2
14).

(8.7)

For p sufficiently close to the diagonal (where α = 1/2) note that R13 + 1 − 2R23 > 0

by Lemma 7. Since W34 ≥ 1, we have W34(R13 + 1 − 2R23) + (R23 + R23R13 − 2R13) ≥
(1−R23)(1−R13) > 0. For sufficiently small Eα, this means that F (r23, r13, 1 + Eα + E14)

changes sign at

E14 = Eα
2(R23 − R13)((r13 − 1)−3 − 1)

((r13 − 1)−3(R13 + 1 − 2R23) + (R23 + R23R13 − 2R13))
+ O(α2). (8.8)

The coefficient of Eα in (8.8) is nonzero for r13 6= 1, so the zero of F is located at

1 + O(Eα), which proves the lemma.

Finally, we will examine RI on the blowup of the point where (r23, r13) = (1, 1). For this

we introduce c = 1−R23

1−R13
. For admissible outer triangles we have c ∈ (0, 1/2), and (c, r13)

may be used as coordinates instead of (r23, r13).

Theorem 10. For admissible outer triangles there is a continuous function Y14b(r13, c)

defining the border configurations near the blowup r23 = r13 = 1.

Proof. The consistency equations for a border configuration on the blowup can be written,

using the variables c and E13 = 1 − R13, as
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(W34 − R14)(W24 − 1) − c(W34 − W24)(R14 − 1) + cE13(R14 − R24) = 0. (8.9)

Consider instead the above equation with E13 = 0.

(W34 − R14)(W24 − 1) − c(W34 − W24)(R14 − 1) = 0, (8.10)

Let us denote the function in (8.10) as Fb. We will show that at the relevant zeros of Fb its

derivative is non-zero. This property is stable under perturbations, and so the function in

(8.9) will also have that property for sufficiently small E13.

There is at least one zero of Fb with r14 in the interval (1/2, 1), for c ∈ (0, 1/2). To see

this we simply compute values at the endpoints. At r14 = 1/2, we have R14 = W34 = 8 and

Fb = −56c(1 − 3−3) < 0. At the other end, W34 becomes infinite and we must take a limit.

If r14 = 1− ǫ14 for 0 < ǫ14 << 1, then R14 ≈ 1+ 3ǫ14 and W24 ≈ 1+ 3ǫ14/2. The coefficient

of W34 will determine the sign of Fb in the limit as ǫ14 → 0, and it is 3ǫ14(1/2 − c) > 0 to

first order in ǫ14.

Now we turn to the derivative of Fb. We can solve for c in the equations Fb = 0 and

plug it into dFb

dr14
to obtain

dFb

dr14
|Fb=0,r13=1 = 3 [ w3

24(2 − r14)(1 + r14)(1 − r14(1 − r14)(4 − 7r14 + 7r2
14))−

2(1 − r14(1 − r14)(5 + r14(1 − r14)(−8 + r2
14(1 − r14)

2)(3 − r14 + r2
14))) ] /

(2((1 − r14)
4(1 + r14 + r2

14) − w3
24(1 − r3

14))).

(8.11)

We would like to show that the derivative dFb

dr14
|Fb=0 is not zero for r14 ∈ (1/2, 1). First we

show that the denominator in (8.11) is never zero on (1/2, 1). Any zero of the denominator

would also be a zero of the polynomial

r14(1 + r14 + r2
14)

2(3 − 9r14 + 13r2
14 − 9r3

14 + 3r4
14) (8.12)

which is obtained by setting the denominator to zero, rearranging and squaring to get rid

of the square root in W24, and factoring. It is easy to see that any zeros in (1/2, 1) would

have to come from the quartic factor pd in (8.12). But the symmetry of the coefficients of
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pd implies that if there were a zero in (1/2, 1), there would also be a zero in (1, 2). This is

impossible since pd(1) = 1, dpd

dr14
(1) = 2, and d2pd

dr2

14

> 0 on (1/2, 1).

Now it must be shown that the numerator of (8.11) has no zeros in the interval. We

use the same technique of setting the numerator to zero, and rearranging and squaring

to eliminate the square roots to obtain a polynomial in r14 which has all the zeros of the

numerator. If we ignore factors which do not have zeros in the interval in question, and we

make the change of variables z = (r14 − 1/2)2, we are left with the polynomial

pn(z) = 32768z8 − 270336z7 + 653312z6 + 1041920z5 − 1603968z4

−2648672z3 − 892760z2 − 184702z − 23569.
(8.13)

On (0, 1/4), pn(z) is less than the value obtained by evaluating all the positive terms in

pn(z) at zero and all the negative terms at z = 1/4. Since this value is −22391.5, pn(z)

has no zeros on (0, 1/4). This is equivalent to the numerator of (8.11) having no zeros in

(1/2, 1).

The implicit function theorem then guarantees the continuity of the resulting function

Y14b(c, r13).

We will need Theorem 10 in Chapter 10, where its relevance will be explained.
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Chapter 9

TOPOLOGICAL LEMMA

In many of the arguments in the following chapters, and indeed for the main result of this

paper, a topological lemma will be used. This can be thought of as one possible extension

of the intermediate value theorem to higher dimensions. Note that here, and throughout

this paper, Dn is the closed unit disk in R
n.

Lemma 11. A continuous map f : Dn → R
n, that restricts to a degree one map f |Sn−1 :

Sn−1 → Sn−1, is surjective onto Dn.

Proof. The proof is by contradiction. Assume that the map is not surjective onto Dn.

Then at least one point, p, is not in the image. However, the induced map on the homology

groups is the identity on Hn−1(S
n−1) = Z. As seen in the commutative diagram below, this

is impossible since the map factors through 0.

Sn−1 Sn−1

Dn
R

n − {p}

f |
Sn−1

i

f

i

Hn−1(Sn−1) = Z Hn−1(S
n−1) = Z

Hn−1(Dn) = 0 Hn−1(Rn − {p}) = Z

f∗|Sn−1=Id

i∗

f∗

Id

For more information on differential topology and the degree of a map see the excellent

introduction by Hirsch [Hr].



46

Chapter 10

EXTENSION OF THE MASS MAP

The goal of this chapter is to apply Lemma 11 to the map from the set of configurations

which are canonical concave central configurations to the space of masses.

Definition 10. Let the set T be defined as the (r23, r13, r0) ∈ R
3
+ for which r23 and r13 are

determined by a point in Q (see (7.1)), r0 ∈ (rC , rI) for r2
23 ≤ r2

13 − r13 + 1, and r0 ∈ (rC , 1)

for r2
23 ≥ r2

13 − r13 + 1.

Recall that M = {(m1,m2,m3,m4)|
∑

mi = 1, mi ≥ 0}.

Definition 11. Let Mc = {(m1,m2,m3,m4)|
∑

mi = 1, mi ≥ 0,m1 ≥ m2,m1 ≥ m3}.

Definition 12. Let M̃c be the union of Mc and the five subsets of M given by m4 = 0,

m2 = 0, m3 = 0, m1 = m2, and m1 = m3.

Definition 13. Let σji =
∆jSik

∆iSjk
, for 1 ≤ k ≤ 4, k 6= i, and k 6= j. The Zi4 variables are to

be substituted for the Ri4 variables in these expressions.

Note that the σji are simply the mass ratios as given in (4.3).

Recall that Zi4 = z−3
i4 are the smooth functions of r0, r23, and r13 constructed in Chapter

7 which give the distances from the points of the outer triangle to the (interior) fourth point.

By construction configurations with these distances are concave central configurations.

Definition 14. The mass map F : T → M is defined by mi = 1/(1 +
∑

j 6=i σji).

The set T parameterizes the set of concave central configurations. We would like to

extend the mass map to the boundary of this set, but this is not possible on the natural

closure of T in R
3. We must at least blow up T at the point (1, 1, 1).

Definition 15. In coordinates (r, θ, φ), define U = [0,∞) × [0, π/2] × [0, π/4].
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Definition 16. Let β : U → R
3 be the blow-down map given by β(r, θ, φ) 7→ (1 +

r tan(φ) cos(θ), 1 + r cos(θ), 1 − r sin(θ)).

Definition 17. Let Tb = β−1(T ).

In order to apply Lemma 11 we must first prove the following theorem:

Theorem 11. The map F extends continuously to the boundary of Tb.

Since the proof of Theorem 11 is rather long, it will be broken up into sections 10.1 -

10.9. The remainder of this section will lay the groundwork for these arguments.

Instead of (r, θ, φ), we will use local coordinates (r23, r13, r0), (r0, a, c), (r13, d, c), or

(r0, a, b), where a = (1−R13)/(R0−1), b = (1−R23)/(R0−1), c = (1−R23)/(1−R13), and

d = a−1 = (R0−1)/(1−R13). Although a, b, c, and d are defined in terms of (r23, r13, r0) they

extend smoothly to most of Tb. In particular, a and b are smooth everywhere on Tb except

where θ = 0 (face 7), d smoothly extends everywhere but θ = π/2, and c extends smoothly

to all of Tb. Note that a = cot(θ) + O(r), b = tan(φ) cot(θ) + O(r), c = tan(φ) + O(r), and

d = tan(θ) + O(r).

Definition 18. For (r cos (θ) cos (2φ)) ≥ cos2 (φ)(2 tan (φ) − 1) let di(r13, c) = (W24 −
RI)/(W34 − W24).

Note that the condition (r cos (θ) cos (2φ)) ≥ cos2 (φ)(2 tan (φ)−1) is simply the inequal-

ity r2
23 ≥ r2

13 − r13 + 1 extended to the blowup. Outer triangles satisfying the inequality

have their third point above the diagonal in Q (cf. Figure 6.2). The arguments in Chapter

8 insure that Y14 is a continuous function of r13 and c. Note also that some functional

dependence was suppressed in Definition 18; RI and Y14 are functions of r13 and c, and W24

and W34 are functions of Y14 and r13.

Lemma 12. The set Tb is homeomorphic to D3, and its boundary consists of the following

seven two-dimensional pieces:

1. A face T1 contained in the plane φ = π/4 whose image points under β have r23 = r13.

2. A face T2 contained in the plane φ = 0 whose image points under β have r23 = 1.
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3. A face T3 contained in the plane θ = π/2 whose image points under β have r23 =

r13 = 1.

4. A surface T4 whose image points under β have r0 = rI and r2
23 < r2

13 = r2
13 − r13 + 1.

5. A face T5 contained in the plane r = 0.

6. A surface T6 whose image points under β have r0 = rC .

7. A face T7 contained in the plane θ = 0 whose image points under β have r2
23 ≥ r2

13 =

r2
13 − r13 + 1 and r0 = 1.

Proof. The fact that Tb is homeomorphic to a closed ball follows immediately from the fact

that β−1 is a diffeomorphism on the interior and T circ is homeomorphic to a ball. Likewise,

the pre-images of boundary faces T1, T2, T4, T6, and T7 are all mapped diffeomorphically

to the boundary of Tb except for their boundary components which have r23 = r13 = 1. We

will use the word face for all the boundary components Ti even they are not all polygons.

It is not hard to compute the properties of the remaining faces, T3 and T5. For later use

we will explicitly describe the all the edges Tij and vertices Tijk where two or three of the

faces intersect.

There are ten vertices where three of the faces meet. The following list names the vertices

by which faces they are boundaries of, and then gives their coordinates (r, θ, φ).

• Faces T1, T6, T7 meet at T167 = (
√

2 +
√

3 − 1, 0, π/4).

• Faces T1, T3, T6 meet at T136 = (1 − 1√
3
, π/2, π/4).

• Faces T2, T3, T6 meet at T236 = (1 − 1√
3
, π/2, 0).

• Faces T2, T4, T6 meet at T246 = (
√

3(1 − 1√
2
), arccos (

√
2
3), 0).

• Faces T4, T6, T7 meet at T467 = (1, 0, arctan (
√

3 − 1)).

• Faces T1, T5, T7 meet at T157 = (0, 0, π/4).



49

• Faces T1, T3, T5 meet at T135 = (0, π/2, π/4).

• Faces T2, T3, T5 meet at T235 = (0, π/2, 0).

• Faces T2, T4, T5 meet at T245 = (0, arctan (21
√

3−19)
208 , 0).

• Faces T4, T5, T7 meet at T457 = (0, 0, arctan (1
2)).

There are fifteen edges Tij . Eight of these are simply line segments between their vertices,

namely T23, T13, T36, T35, T25, T57, T15, and T17.

The edge T24 is given by r23 = 1 and r0 = rI(1, r13), where

rI(1, r13) =
8(r6

13 − 12r4
13 + 48r2

13 − 56)

r9
13 − 12r7

13 + 7r6
13 + 48r5

13 − 84r4
13 + 336r2

13 − 448
.

The edge T47 consists of points (
√

r2
13 − r13 + 1, r13, 1) in coordinates (r23, r13, r0).

The edge T16 is given by r23 = r13 and r0 = rC . For these configurations rC =

r2
13/

√
4r2

13 − 1.

Similarly T26 consists of points (1, r13, rC) in coordinates (r23, r13, r0). In this case rC =

1/
√

4 − r2
13.

For the edge T46 we can also use (r23, r13, r0) coordinates, with points (
√

r2
13 − 1, r13,

r13/2). These configurations have right-angled outer triangles with r0 = rI = rC .

The edge T67 consists of points (
√

3r13/2 +
√

4 − r2
13/2) in coordinates (r23, r13, r0).

The only edge for which we lack an explicit description is T45. In coordinates (r13, d, c),

points on this edge have the form (1, di(c), c).

Our goal is to extend the mass map F to Tb. We will take this one face of the boundary

of Tb at a time, starting with the isosceles boundaries. After examining the interior of each

face we will consider each edge and then each vertex. Each face of the boundary is mapped

by the extension to a point, a line, or a face of the boundary of M̃c ⊂ M. Note that for

some convenience of exposition, T has been blown up more than is strictly necessary for the

purpose of extending F ; i.e. Tb is slightly larger than necessary.
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In most cases the first step will be to extend the functions zi4(r23, r13, r0), the interior

interparticle distances, to the boundary points in question. Then the extension of F will be

examined.

We will commit a mild abuse of notation by denoting the extension of F by F as well.

A schematic diagram of Tb is shown in Figure 10.1. The vertices are accurate; two of

the faces are depicted as flat although they are curved surfaces. These will be discussed

in more detail below. Figure 10.2 is an accurate depiction of some of the curved boundary

lines, and includes the image of the diagonal in Q where r2
23 = r2

13 − r13 + 1.

For reference we list here the most frequently used expressions for the components of F .

0 Phi

Theta

r

Figure 10.1: Schematic of Tb structure

0 Phi

Theta

r

Figure 10.2: Tb structure showing diagonal
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m1 =

(
1 +

∆2S13

∆1S23
+

∆3S12

∆1S23
+

∆4S13

∆1S34

)−1

, (10.1)

m2 =

(
1 +

∆1S23

∆2S13
+

∆3S12

∆2S13
+

∆4S23

∆2S34

)−1

, (10.2)

m3 =

(
1 +

∆1S23

∆3S12
+

∆2S13

∆3S12
+

∆4S13

∆3S14

)−1

, (10.3)

and

m4 =

(
1 +

∆1S34

∆4S13
+

∆2S34

∆4S23
+

∆3S14

∆4S13

)−1

. (10.4)

Note that we are free to substitute a different Sij/Sik in each term from the consistency

equations.

10.1 Face 1: First isosceles case

Definition 19. Type-1 isosceles configurations have r12 = 1, 1 ≤ r13 = r23 ≤
√

2 +
√

3,

and 1/
√

3 ≤ r14 = r24 ≤ 1.

The first face of Tb, where φ = π/4, parameterizes the type-1 configurations. On the

interior of this face F is already defined so no extension is necessary. The symmetry of

these configurations implies that F1 = F2.

0 Phi

Theta

r

m1=1

m3=1

m2=1

m4=1

Figure 10.3: Isosceles type-1 face and part of its image in M (schematic)
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10.2 Face 2: Second isosceles case

Definition 20. Type-2 isosceles configurations are configurations with r12 = r23 = 1 <

r13 <
√

2 and r13

2 < r14 = r34 < rC = 1√
4−r2

13

.

Just as for the type-1 configurations, we already have the zi4 defined on the interior

of the second face, where φ = 0, which corresponds to type-2 configurations. All of the

components of F are continuous and well-defined on interior points of T2.

0 Phi

Theta

r

m1=1

m3=1

m2=1

m4=1

Figure 10.4: Type-2 isosceles face T2b and part of its image (schematic)

10.3 Face 3: Outer equilateral triangle

The third face of the boundary of Tb consists of points with θ = π/2, that is points p0 =

(r0, 0, c) in coordinates (r0, a, c). These configurations have an equilateral outer triangle

(r23 = r13 = 1). As the following lemma shows, we can smoothly extend the zi4 functions

so that the fourth point is at the circumcenter of the outer triangle.

Lemma 13. For p ∈ Tb, limp→p0
zi4 = 1/

√
3.

Proof. We simply examine the consistency equations (4.2) and note that at p0 we have

S12 = S13 = S23 6= 0, which implies that S14 = S24 = S34. That, in turn, implies that the

inner distances zi4 must become equal as p → p0, which means they will be equal to the

circumradius 1/
√

3.
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It follows that the outer masses must be equal (F1 = F2 = F3), and m4/m1 is determined

by the value of r0. Since the limit is independent of c the blowup is somewhat redundant,

but this does not cause any problems.

0 Phi

Theta

r

m1=1

m3=1

m2=1

m4=1

Figure 10.5: Outer equilateral face of Tb and its image in M (schematic)

Figure 10.5 shows the third face in our schematic of Tb, and part of its image under the

extended mass map F . The redundancy of the blowup is seen by the one-dimensionality of

the image.

10.4 Face 4: Border configuration boundary

For points in the interior of the fourth face, where r0 = rI , we have D2 = 0 and z34+z14 = r13

by definition. For all these points we can extend m2 to be zero. The other components of

F extend continuously as well, with the simplification that σ2i = 0 for i ∈ {1, 3, 4}, since

the strict inequalities z34 < z14 < z24 < r0 < 1 < r23 < r13, D1 > 0, D3 > 0, and D4 > 0

prevent any terms of F from becoming singular.

Figure 10.6 schematically depicts the points of the fourth face along with the part of

their image in Mc. It should be pointed out that this face of Tb is not actually flat in the

(r, θ, φ) coordinates. It is a smooth surface θi(r, φ), and from numerical studies it appears to

be fairly close to a flat face (cf. Figure 10.2). Its size has also been somewhat exaggerated

for clarity.
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Figure 10.6: Border configuration face of Tb and part of its image in M (schematic)

10.5 Face 5: r = 0 boundary

For the interior of the fifth face, where r = 0, let p0 = (0, a, b) in coordinates (r0, a, b). This

is part of the blowup of the point (1, 1, 1) in the original coordinates (r23, r13, r0). These

points are shown in Figure 10.7 along with the part of their image under F which is in Mc.

Lemma 14. The functions z14, z24, and z34 extend continuously to the interior of the fifth

face of Tb.

Proof. The proof of Theorem 7 is sufficient for this lemma once we change into the (r0, a, b)

coordinates. Then F14 = R0 + (1 + a)(R24 −R0)/(1 + b) and F34 = R0 + (1 + a)(R24 −R0).

These functions are well behaved on the interior of the fifth face, and the proof of Theorem

7 goes through, mutatis mutandis. In fact the construction also goes through for the interior

of edges T15, T25, and T35, where b = 0, b = a, and a = b = 0 respectively.

10.6 Face 6: R0 = RC boundary

The case of the interior of the sixth face, where R0 = RC , is particularly simple. Lemma 4

implies that the zi4 all continuously extend to be equal to RC . This in turn implies that

Lemma 15. For p0 = (rC , r13, r23) ∈ Tb and a point p ∈ Tb,

lim
p→p0

m4 = 1.
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Figure 10.7: r = 0 face of Tb and part of its image in M (schematic)

Proof. Since S14 = S24 = S34 = 0, the result follows immediately from (10.4) since the

other quantities are non-zero.

Of course, Lemma 15 implies that the other masses must be zero, i.e. limp→p0
mi = 0

for i = 1, 2, 3.

0 Phi

Theta

r

m1=1

m3=1

m2=1

m4=1

Figure 10.8: R0 = RC face of Tb and its image in M

Figure 10.8 shows the sixth face shaded in our schematic of Tb, along with part of its

image (the point m4 = 1 in M).

10.7 Face 7: R0 = 1 boundary

For the interior of the seventh face, we examine points p0 = (r23, r13, 1) in our original

coordinates (r23, r13, r0), where r2
23 ≥ r2

13 − r13 + 1. Lemma 3 implies that the zi4 extend
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smoothly to this part of Tb, with z14 = z24 = 1 and

z34 = 1 + r2
23 + r2

13 −
√

3[2(r2
13 + r2

23) − 1 − (r2
13 − r2

23)
2].

We can compute that limp→p0
m3 = 0 from (10.3) and by noting that limp→p0

S14 =

limp→p0
S24 = limp→p0

S12 = 0 while the other Sij and the ∆i stay non-zero.

The other masses have well-defined limits as p → p0 that do not simplify much except

for the disappearance of the m3/mi term.

In Figure 10.9 this face is depicted along with part of its image in M.

0 Phi

Theta

r

m1=1

m3=1

m2=1

m4=1

Figure 10.9: R0 = 1 face of Tb and part of its image in M

10.8 Edges

In this section we see what the previous extensions of F to the faces imply for the extension

to the edges.

As with the interior of the sixth face, we can extend F to all the edges Ti6 with

the constant value of (0, 0, 0, 1). The continuity of this extension is easy to check, since

limp→p0
zi4 = rC for any p ∈ Tb and p0 ∈ Ti6.

The extension of F to edges T13 and T23 is also relatively simple. To preserve continuity

with our extension to T3 we must let F(p0) = (m1,m1,m1, 1− 3m1), where p0 ∈ T23 or p13

and m1 = (3 + 3(R0−1)
RC−R0

)−1.

As noted in the proof of Lemma 14, we can extend the functions zi4 continuously to the

edges T15, T25, and T35. We can then extend F to these edges without difficulty, as any
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singular expressions can be avoided by an appropriate choice of the σij . On T15 we then

have

F1 = F2 =
z−2
34 − z34

2(z−2
34 − z34) +

√
4z2

14 − 1(z−3
14 − 1)

where z34 =
√

1/2 + z2
14 −

√
3(4z2

14 − 1). Since F4 = 0 on this edge, F3 = 1 − 2F1. The

formulae for T25 are identical up to the substitution of z24 for z34. On the edge T35, F
extends continuously to the value (1/3, 1/3, 1/3, 0).

For points on T17, we can apply Lemma 3 to see that we can continuously extend the zi4

by letting z14 = z24 = 1 and z34 =
√

1/2 + r2
13 −

√
3(4r2

13 − 1). F continuously extends to

be (m1,m1, 0, 1−2m1), in which the expression m1 = (2+ D4(1−R13)
D1(Z34−1) )

−1 does not appreciably

simplify further.

By the definition of rI we know that the zi4 extend continuously to a point p0 = T24

with z34 = z14 = r13/2 and z24 =
√

1 − r2
13/4. Recall that p0 = (r13, r13, rI) in coordinates

(r23, r13, r0). As on the rest of the face T4, since ∆2 = 0 we extend by setting F2(p0) = 0.

There are no other singular terms in the Fi, and we find that F1(p0) = F3(p0) = (2 +

2 RI−R13

8R13−RI
)−1 and F4(p0) = 1 − 2F1(p0).

The points p0 ∈ T47 consist of points ((r2
13 − r13 + 1), r13, 1) in coordinates (r23, r13, r0).

By considering the behavior of the zi4 on the faces T4 and T7 it is clear that we can extend

z14(p0) = z24(p0) = 1 and z34(p0) = r13 − 1. So just as for the interior of T7 at p0 we have

S14 = S24 = S12 = 0.

For points on the edge T45 we know that the zij extend continuously by the arguments in

Chapter 8. These points have the form (1, di(c), c) in coordinates (r13, d, c). Recall that for

these points D2 = 0. F extends continuously to these points with F2 = F4 = 0, F4 = 1−F1,

and F1 = (1 + (
√

3/4−D1)(Y14−1)
(D1)(W34−1) )−1. In the expression for F1 note that Y14 is a function of c

and W34 = (1 − Y
−1/3
14 )−3.

The edge T57 consists of points p0 = (1, 0, c) in coordinates (r13, d, c). Note that for this

edge the coordinate c is in the interval (1/2, 1). Here the extension is a bit trickier. We

begin with the following lemma.

Lemma 16. For p ∈ Tb and p0 ∈ T57, limp→p0
z14 = limp→p0

z24 = 1 and limp→p0
z34 = 0.
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Proof. If we let 1+ǫ13 = r13 then we have r23 = 1+cǫ13+O(ǫ2
13). In terms of our coordinates

(r13, d, c) we have r0 = 1 − dǫ13 + O(ǫ2
13), F14 = 1 + (1 + d)(R24 − 1)/(d + c) + O(ǫ13) and

F34 = 1 + (1 + d)(R24 − 1)/d + O(ǫ13). Recall that F14 and F34 are used to define the zi4

in Theorem 7.

Using these expansions we compute that for r24 = (1 − 5d) we have

P (1, r23, F
−1/3
34 , F

−1/3
14 , r13, 1 − 5d) = −6d + O(d)O(ǫ13) + O(d2),

which is negative for sufficiently small d and ǫ13. Recall from the proof of Theorem 7 that

at the endpoint where r24 = r0 that P > 0. Thus we know that for sufficiently small d and

ǫ13, z24 is between (1 − dǫ13) and (1 − 5d), which means that limp→p0
z24 = 1. From the

expression for F14 we can see that this implies that limp→p0
z14 = 1. Finally, the fact that

limp→p0
z34 = 0 follows from planarity.

With Lemma 16 in hand, we now examine the behavior of zi4 near p0 in more detail.

We will use the same expansions for r13 and r23 as in Lemma 16. From the relation

S13/S23 = S14/S24 we find that if z14 = 1 + ǫ14 then z24 = 1 + cǫ14 + O(d). Using these

expansions we find that

lim
p→p0

σ21 =
(2c − 1)

c(2 − c)
, (10.5)

after which it is easy to compute that F extends continuously to T57 with values

lim
p→p0

m1 = c(2 − c)/(4c − c2 − 1),

lim
p→p0

m2 = (2c − 1)/(4c − c2 − 1),

lim
p→p0

m3 = 0,

and

lim
p→p0

m4 = 0.
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10.9 Vertices

We can complete our continuous extension of F by studying its behavior near the vertices.

It is easy to see from previous sections that we can let F(Tij6) = (0, 0, 0, 1). It is also

trivial to determine that we can let F(T235) = F(T135) = (1/3, 1/3, 1/3, 0).

The vertex T245 can be described as (1, 21
√

3−19
208 , 0) in coordinates (r13, d, c). To see that

the z14 have a continuous extension to this point we must again revisit the functions F14

and F34 from the proof of Theorem 7.

Lemma 17. For p ∈ Tb and p0 = T245, limp→p0
z14 = limp→p0

z34 = 1/2 and limp→p0
z24 =

√
3/2.

Proof. Let p = (r13, d, c), with r13 = 1+ ǫ13 and d = 21
√

3−19
208 + ǫd = d0 + ǫd. Then both F14

and F34 are of the form 1 + (1 + 1/d0)(R24 − 1) + O(ǫ13) + O(ǫd) + O(c). We can compute

that

P (1, 1 + O(ǫ13), F
−1/3
34 , F

−1/3
14 , 1 + ǫ13, r24)|r24=

√
3/2 = O(ǫ13) + O(ǫd) + O(c).

By Lemma 5 this means that limp→p0
z24 =

√
3/2. It is then easy to compute from the

expressions for F14 and F34 the rest of the lemma.

With Lemma 17 in hand, we can continuously extend F to this vertex by F(T245) =

(1/2, 0, 1/2, 0).

The extension of F to the vertices T157 and T457 is covered by the arguments for the

edge T57. The point T157 is (1, 0, 1) in coordinates (r13, d, c), and the formulae for F(T57)

specialize to F(T157) = (1/2, 1/2, 0, 0). Likewise we can let F(T457) = (1, 0, 0, 0).

Proof of Theorem 11. The preceding sections (10.1 - 10.9) have shown that F extends con-

tinuously to the boundary of Tb by examining its behavior on every boundary piece.
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Chapter 11

SURJECTIVITY OF THE MASS MAP

In this chapter we examine the degree of the extended map F on the boundary of its

domain, in order to prove the following theorem.

Theorem 12. Every point in Mc has a preimage of F in Tb.

Definition 21. Let M1 denote the set {(m1,m2,m3,m4)|
∑

mi = 1, mi ≥ 0, m1 =

m2,m1 ≥ m3}. Let M̃1 denote the set {(m1,m2,m3,m4)|
∑

mi = 1, mi ≥ 0, m1 = m2}.

Note that ∂M1 is the union of the segments {(m1,m1, 1 − 2m1, 0) | 1
3 ≤ m1 ≤ 1

2},
{(m1,m1, 0, 1 − 2m1) | 0 ≤ m1 ≤ 1

2}, and {(m1,m1,m1, 1 − 3m1) | 0 ≤ m1 ≤ 1
3}.

Lemma 18. F4 restricts to a monotonic function of r0 on T13, whose image is the segment

[0, 1].

Proof. From section 10.8 we know that the image of T13 under F is contained in the segment

{(m1,m1,m1, 1 − 3m1) | 0 ≤ m1 ≤ 1
3}. From section 10.9 we know that F4(T135) = 0 and

F4(T136) = 1. Recall from section 10.8 that a point p in T13 has the form (r0, 0, 1) in

coordinates (r0, a, c) and that F4(p) = 1 − 3(3 + 3(R0−1)

3
√

3−R0

)−1. We can simplify F4(p) to the

form R0−1
3
√

3−1
, which is clearly monotonic in r0.

Lemma 19. The degree of the map F|∂T1
from ∂T1 to ∂M1 is ±1.

Proof. This is almost immediate from Lemma 18. We need only note that the images of

edges T17, T15, and T16 are disjoint from the interior of the mass core {(m1,m1,m1, 1 −
3m1) | 0 ≤ m1 ≤ 1

3}. Thus for q in the mass core, there is only one preimage F|−1
∂T1

(q) and

by Lemma 18 q must be a regular value of F|∂T1
. This implies that degree of F|∂T1

is ±1

(cf. Hirsch [Hr]).
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Lemma 20. The degree of the mass map from the boundary of Tb to the boundary of M is

±1.

Proof. In previous sections we have seen that the image under F of the various faces of Tb

are each contained in a set of the form Li ∩ ∂M̃c where Li is some proper linear subspace

of R
4. This means that the following diagram commutes,

∂Tb ∂ fMc

T1/∂T1
fM1/∂M1

F

QT

F̃

QM

in which QT is the quotient map that collapses the complement of the interior of T1 to a

point, and QM is the quotient map that collapses ∂M1 and the complement of M̃1 to a

point.

Note that the sequence of maps

∂M1
i→֒ M̃1 → M̃1/∂M1 (11.1)

induces a long exact sequence of homotopy groups which collapses to isomorphisms between

πn+1(M̃1/∂M1) and πn(∂M1). In particular the isomorphism between π2(M̃1/∂M1) and

π1(∂M1) implies that deg(F̃) = deg(F|∂T1
) = ±1. Since the quotient maps QT and QM

are homotopic to the identity, deg(F) = deg(F̃) = ±1 as well.

Proof of Theorem 12. This follows immediately from Lemma 20 and Lemma 11.
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Chapter 12

NUMERICAL EXPERIMENTS

Although none of the proofs presented here rely on upon numerical evidence, many nu-

merical experiments were helpful in clarifying how some of the faces fit together. Computing

the concave central configurations for a fixed outer triangle was perhaps the most useful

of these experiments, and so four representative examples are shown in Figure 12.1. The

curve of fourth points is parameterized by r0. They always begin at the circumcenter of

the triangle (r0 = rC) and end at either r0 = 1 or r0 = rI depending on whether or not the

third point is above or below the diagonal in Q, respectively.

Figure 12.1: Curves of points for a given outer triangle
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Chapter 13

CONCLUSION

Proof of Theorem 1. In chapter 6 a canonical representative for each equivalence class of

concave central configurations was defined. Then Theorem 8 showed that the set of such

representatives of concave central configurations is homeomorphic to a three-dimensional

ball (including only part of its boundary). In chapter 10 the map F was then shown to

extend continuously to the boundary of that set after blowing up some of the points on the

boundary. Finally in chapter 11 the extended map restricted to the boundary is shown to

have non-zero degree onto its image, which implies that the map is surjective onto M by

Lemma 11 in chapter 9.

Combined with the previously known information on central configurations of the four-

body problem we have the following conclusion:

Theorem 13. For any four positive masses (m1,m2,m3,m4) ∈ R
4
+ there are the following

equivalence classes of central configurations: exactly one spatial class [Sa1], exactly 12

collinear classes [Mu], at least one convex class [MB], no noncollinear classes with three

collinear points [ZY], and at least one concave class.

We can also observe a couple of corollaries to the proof of Theorem 1.

Corollary 1. For four masses where no pair of masses are equal there are at least eight

concave central configurations.

Proof. Given masses ma, mb, mc, and md, we can choose any of them to be m4. Then in

order to be in the image of our map F we must choose the greatest of the remaining masses

to be m1. Finally, we are left free to choose either of the remaining two masses to be m2.

These eight choices correspond to eight distinct points in Mc, which have eight distinct

preimages in Tb.
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Corollary 2. There exist concave central configurations for any four masses with m1 >

m2 = m3 = m4 > 0 such that none of the interparticle distances rij are equal.

Proof. This is immediate from the fact that Mc contains the segment where m1 > m2 =

m3 = m4, and the preimages of this segment with respect to F will have no equal interpar-

ticle distances.
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