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The avatlability of inexpensive, fast. reliable scanning devices and computers has
made the appendage of a check digit to identification numbers a standard practice.
Indeed. one finds check digits appended to identification numbers on airline
tickets. credit cards. money orders, bank accounts. checking accounts. library
books. grocery items. traveler’s checks, driver’s licenses, passports. rental cars.
chemicals. blood bank items, photofinishing envelopes. UPS packages. express
mail. bar coded mail and books. Details about many of these are contained in [2],
[3], [4] and [5].

Typical of the genre is the Universal Product Code (Figure 1) found on grocery
items. A UPC identification number consists of twelve digits. each of which can be
from 0 to 9. The first six digits identify the country and the manufacturer. the next
five the product, the last is the check digit. (For many items, the check digit is not
printed. but it is always bar coded.) The check digit a,, for the UPC number
a,a- -+ a,, is chosen to satisty the condition

{ay,a-....,a,,) (3. 1,3.1.3.1,3,1.3.1.3,1)
=3a,+a,+3a,+ - +3a,,+a;,=0 (mod10).
In particular. the check digit is
—(a,,a~,...,a;;) - (3,1,3,1,3,1,3,1,3,1,3) modulo 10.

||\|

0"'50743"11502"" 8
1502 Tubby Tug™ Tug

Figure 1
UPC identification number 05074311502 and check digit 8. Check a,, chosen to satisfy
(a,.a-,.... ay.a-)(3.1L,3,1,....3,1)=0 (mod 10).
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Notice that any single error, say a,a, **-a; - a,,—>aa, - a;/ - a, is de-
tectable since (a,a5,...,a;5...,a,5)-(3,1,3,1,...,3,1) # 0 (mod 10) if a; # a;.

A more complicated scheme (Figure 2), developed by IBM, is used by credit
card companies, libraries, blood banks, photofinishing companies, pharmacies, the
motor vehicle divisions of South Dakota and Saskatchewan, and some German
banks. In this case, let o be the permutation (0)(124875X36)(9). For any string of
digits a,a, - - - a,_, we assign the check digit a, so that o(a,) +a, + o(a;) +a,
+ -+ +o(a,_)+a,=0 (mod 10). (When n is odd, o is applied to the even
numbered positions instead.) Let us look at an example. Say we have the num-
ber 7659214. Then the check digit ¢ satisfies 5+6+1+9+4+1+8+¢=0
(mod 10) so that ¢ = 6. Alternately, ¢ = (10 — (L, ,4s2a; +124,/10D + L, ..ep @)
(mod 10))) (mod 10).

SELCO RECIONMAL LIBRARY SYSTEW

AR

1 1001 0002112 7

Figure 2
Library identification number 1 1001 0002112 and check digit 7. Check digit a,; satisfies
a, +o(a,) +a;+olay)+ -+ +olay,) +a;; =0 (mod 10) where o = (0)(124875)(36)(9).

Both the UPC scheme and the IBM scheme detect 100% of all single digit
errors, while neither detects 100% of all errors involving the transposition of
adjacent digits. In particular, an error of the form ---ab--- — ---ba ---1is
undetected by the UPC scheme if |a —b|=35 and it is undetected by the IBM
scheme if (a, b) =(0,9) or (9,0). It follows that the UPC scheme detects transposi-
tion errors involving adjacent digits at the rate of 88.9% while the IBM rate for
these kinds of errors is 97.8%.

After single digit errors and errors involving the transposition of adjacent digits,
the next most common errors are those of the form---abc -+ — -+ cha - -
For example, for a number such as 726-5258 one might naturally transpose “52”
and “58.” This error would be undetected by the UPC and IBM schemes but
would be detected by the one used by American banks and by the one used on
passports in many Western countries. To a number a,a, -- - a; banks assign
(a,a,,a,,a,,as,aq,a4,ag)°(7,3,9,7,3,9,7,3) modulo 10. Similarly, many coun-
tries use the weighting vector (7,3,1,7,3,1,...) and modulo 10 arithmetic to assign
check digits to numbers appearing on passports. Notice that not all “jump”
transpositions are detected by the bank and passport schemes since neither detects
the error - -- 5257 -+ —» --- 5752 ---.

Table 1 gives a catalog of common “pattern” errors and their relative frequency
as found in one empirical study [12]. Phonetic errors are those of the form
cveg0- o --+-1g---fora=2,3,...,9. When giving a credit card number over
a telephone, for instance, “50” might well be interpreted as “15”. Format errors
caused by the insertion or deletion of one or more characters is another common
error.

In certain circumstances an error that would ordinarily be uncommon can
become quite common. This occurs in Sweden where national registration numbers
consist of six digits for the date of birth (year /month /day) followed by three digits
to avoid duplications. Many people transpose the digits for the year and those for
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Table 1
Common pattern errors

Error type Form Relative frequency
single error a—b 79.1%
transposition of adjacent digits ab — ba 10.2%
jump transposition abc — cba 0.8%
twin error aa — bb 0.5%
phonetic error al e la 0.5%
a=2,...,9
jump twin error aca — beb 0.3%
the day thereby creating an error of the form a,a,a;a,a5a, '+ — asaqa;a,a,4a,

In contrast to the UPC scheme and IBM scheme, the check digit a,, for the ten
digit International Standard Book Number (ISBN) (Figure 3) is chosen to satisfy
the condition (a;,a,,...,a,,)"(10,9,8,7,6,5,4,3,2,1)=0 (mod 11) and detects
100% of all single digit errors and 100% of all transposition errors. The drawback
of this method is that in some cases the check digit is required to be 10, which is
not a single digit. To maintain a uniform ten digit format for all books the
character X is used to represent 10.

0-669-19493-X

Figure 3
Book with ISBN 0-669-19493 and check digit X, which stands for 10. The check digit a,
satisfies (a,, a,, ..., aq,a,9)-(10,9,8,7,6,5,4,3,2,1) = 0 (mod 11).

There are many variations of the ISBN scheme that are designed to avoid the
introduction of the alphabetic character. Typical of these is an IBM scheme used
by the states of Arkansas, New Mexico and Tennessee to assign driver’s license
numbers. Here, a string a,a, --- a, has appended —(a,,a,,a;,a,,4s, a5,a,)"
(2,7,6,5,4,3,2) modulo 11 unless this number is 0 or 1. In these two instances, 1 or
0 is appended respectively. This method catches all single digit errors but not all
transposition errors. The errors of the form ---a,---a; "+ > -+ aq; - g
- - - that go undetected are those where i =1 and j =7 (an unlikely error indeed)
and some involving the check digits 0 and 1. Of course, one could avoid the use of
an alphabetic character by simply not issuing numbers that yield the dot pro-
duct 10.

Another modulo 11 scheme used by some German banks employs weights that
form a geometric progression rather than an arithmetic progression as in the case
for the ISBN method. Specifically, a, is chosen so that (a,,a,,...,a,):
(2,22,...,2") =0 (mod 11). As before, the situation that a, = 10 must be avoided
or handled in some special way. While the ISBN method detects 100% of single
errors, 100% of transposition errors and 100% of jump twin errors it does not
detect 100% of phonetic errors or 100% of twin errors. On the other hand, for
n < 10, the weighting vector (2,22,...,2") permits 100% detection of all errors
listed in Table 1.
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Of all the methods actually in use the most exotic I have encountered is the one
used on some German bank accounts. This scheme employs three permutations
and two moduli as follows. For i = 1,2 and 3 define o.(a) = (i(a + 1Xmod 11)). To
the number a,a, - - ag, assign o(a,) + o,(a,) + o5(a3) + o fa,) + oas) + o5(ag)
+a(a;) + o{ag) modulo 10. As an illustration consider 2191-06-70. Here the
check digit is

0,(2) + o,(1) + 05(9) + (1) + ,(0) + 05(6) + (7)) + 7,(0)
=3+4+8+2+2+0+8+2=9(mod10).

Schemes that incorporate two check digits are not uncommon. For instance,
Norway employs two check digits modulo 11 to allocate registration numbers to its
citizens. The last two digits of these eleven digit numbers aa, - - aa,, are
a,= —(a, ay,a5,...,a9)-3,7,6,1,8,9,4,5,2) modulo 11 and a, =
—(a;,a,,...,a,9)°(5,4,3,2,7,6,5,4,3,2) modulo 11. This method detects all sin-
gle digit errors and all double errors except those where the difference between
the correct number and the incorrect number has the form (0,0,0,4,0,0,0,0,0,
11 — a,0). Numbers for which a,, or a,, is “10” are not assigned.

An even more effective two check digit scheme consists of strings of length 10
satisfying (a;, a,,...,a,9) (1, 1,...,1,1)=0 (mod 11) and (4, a,,...,a,)"
(1,2,3,...,9,10) = 0 (mod 11). Avoiding all strings that require a4 or a4, to be
“10” still leaves more than 82 million numbers. This method detects all double
errors and corrects all single errors. The first dot product determines the magni-
tude of any single error while the second one identifies the location of the error.
Let’s see how this works. Say our number is 73245018. Then a, and a,, satisfy
8+ay+a;;=0(mod 11) and 10 + 9a, + 10a,; =0 (mod 11) so that a,=7 and
a,, = 7. Consider the error 7324501877 — 7824501877. Since the sum of the digits
of the incorrect number is 5 modulo 11, we know that one of its digits is 5 too large .
(assuming only one error has been made). But which one? Suppose the errory,
occurred in the ith position. Then the second dot product is 5 too large. That is,\%\ .
(7,8,2,4,5,0,1,8,7,7)-(1,2,3,4,5,6,7,8,9,10) = 5i (mod 11) or 10 =5; (mod 11). '\ -
We conclude that the second digit is 5 too large.

Single digit errors in reading bar coded identification numbers are usually
correctable in much the same fashion. An unintelligible block of bars pinpoints the
source of the error while the check digit condition diagnoses the extent of the
error.

Two-check-digit schemes that correct all single digit errors and all transposition
errors utilizing modulo 37 or modulo 97 arithmetic have also been discovered ([11]
and [1)). A large mail order house has recently implemented a four-check-digit
scheme [13].

Although all of the examples we have discussed in this paper place the check
digit or digits at the end, there is no mathematical reason why this must be so. In
fact, the schemes used to assign driver’s license numbers in Washington and South
Dakota have check digits that are not last (see [4]).

A cursory examination of identification number schemes in use leads one to
question what appears to be excessive iength. Indeed, Wisconsin driver’s license
numbers have 14 characters while New York’s have 19. Surely, 10'° numbers is
more than is needed even for New York! However, in most instances, identifica-
tion numbers are not issued in sequence or randomly. Rather, the numbers encode
specific data and little or no freedom is involved in the assignment of a number.
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Consider the Wisconsin driver’s license number: A 536-4683-9458-05. The “A” is
the first character of the surname of the holder; the next three digits range from 0
to 6 and are determined by a complicated algorithm applied to the surname;
positions 5, 6 and 7 are a function of the first name and middle initial; positions 8
through 12 encode year and date of birth and sex; 13 is a tie breaker to distinguish
among people whose first 12 characters match; the last digit is a check digit. (See
[4] for details.)

The examples above can be put in an abstract setting as follows. Let Z, be the
additive group of integers modulo k& and let o,,0,,...,0, be a sequence of
mappings from Z, into itself. For any string of elements a,a, --- a,,_, from Z,,
append an element a, so that o(a,) + o,(a,) + - +0o,(a,) =0 (mod k). We call
the sequence o, 0,,...,0, a check digit scheme for Z,. Typically, o, is chosen to
be the identity or the negative of the identity. A single digit error a, = a; is
detectable if and only if o(a;) # 0,(a;") (mod k) while a transposition error - - -
aa;., """ a;a, - craa,, ccaa;,, cis detectable if and only if
o(a;) +ofa;) #ola) + oa;) (mod k). Of course, the condition for detection of a
single digit error in position i is just that o; is a permutation on Z,. Since the
mapping from Z, — Z, given by x — mx for all x is a permutation if and only if
ged(m, k) = 1, we see that the UPC, the bank and the ISBN schemes detect 100%
of all single digit errors, while a scheme that assigns a check digit a, to the string
a,a, --a,_, sothat(a,a,...,a,_,a,) (n, ...,2,1)=0 (mod 10) does not. In
particular, notice that a single error a;, —a; is undetected if |a,—a!|=35 and
position i/ has an even weighting factor, while a single error a; — a; is undetected if
la; — a!| is even and position i has a weighting factor divisible by 5. Despite this
deficiency, the latter method is used on the Chemical Abstract Service registry
numbers and driver’s licenses issued by the state of Utah and the province of
Quebec. Since a Quebec driver’s license number has twelve digits, notice that all
errors in the third position are undetected! On the other hand, this scheme does
detect 100% of transposition errors involving adjacent digits, while the UPC, IBM
and most other modulo 10 schemes do not.

For check digits that satisfy a condition

(ay,a,5,...,a,)  (w;,wy,...,w,) =0 (mod k),

we may readily determine the undetectable single position errors and the unde-
tectable transposition errors. (Actually, there is no compelling reason to use 0 in
the condition. Any value in Z, will do.)

Theorem. Suppose an identification number a a, - - - a, satisfies
(a,,ay,...,a,) (w,w,,...,w,) =0 (mod k).

Then a single-position error a; — a; is undetectable if and only if (a;,—a,)w;=0
(mod k) and a transposition error that interchanges the elements in the ith and jth
positions is undetectable if and only if (a; —a;Xw; —w;) =0 (mod k).

Proof. Consider a single error in the ith position. Say @, is substituted for a;.
Then the dot product for the correct number and the dot product for the incorrect
number differ by (a,—a/)w, Thus the error is undetectable if and only if
(a; —a)w, =0 (mod k).
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Now consider an error of the form

Y alal+l ... aja]+l S T aja,+l “ . ala]+l ..

Then the dot product for the correct number and the dot product for the incorrect
number differ by

(aw, + ajw]-) —(aw, +aw;) = (a;,— a;)(w,—w;).
Thus, the error is undetectable if and only if
(a;—a;)(w,—w;)=0(modk). =
When a check digit satisfies the condition (a,,a,,...,a,) - (w,w,,...,w,) =0
(mod k) and the digits a,, a,,...,a, are restricted to 0 to k — 1 it is straightfor-

ward to determine conditions on the “weights” that ensure all errors of specific
types are detectable. These are provided in Table 2.

Table 2
Conditions for detection of all errors of various types

Error type Form Condition for modulus &
single error a,—a; ged(w;, k) =1
transposition error R PR PR TR TR ged(w; —w, k) =1
twin error aa — bb (positions i and i + 1) gedlw, +w; |, k) =1
phonetic error a0 & 1a (positions i and i + 1) aw; 1 #(a— Dw,

foralla=2,...,k—1
jump twin error aca < beb (positions i,i + 1,1 + 2) ged(w; +w; 5, k) =1

The preceding theorem and Table 2 reveal why check digit schemes that use a
modulus less than 10 are fairly uncommon while modulus 11 schemes are quite
common. In the case that the modulus & is less than 10, all single digit errors and
all transposition errors cannot be detected without restricting the digits to range
from 0 to k — 1. The modulus 7 scheme used by airline companies and UPS (see
[5]), for instance, cannot distinguish between a and &’ when |a —a'|=7. On the
other hand, for modulus 11 schemes the conditions of the preceding theorem for
the detection of all single errors and all transposition errors are met simply by
choosing distinct weights between 0 and 10. As previously mentioned the only
drawback of modulus 11 schemes is the necessity of either introducing an extra
character or avoiding some numbers. A modulus 13 system used at Rhode Island
Hospital is described in [10].

This discussion raises the question of whether it is possible to devise a modulus
10 scheme that detects all single digit errors and all transposition errors. The
answer is no, even when the transposition involves adjacent digits.

Theorem [6]. Suppose an error detecting scheme with an even modulus detects all

single-position errors. Then for every i and j there is a transposition error involving
positions i and j that cannot be detected.
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Proof. Let the modulus be 2m. In order to detect all single-position errors it is
necessary that the mappings o; be permutations. In order to detect all transposi-
tion errors involving positions i and j it is necessary that o,(a) + a;(b) # o;(b) +
ofa) for all a#b in Z,,,. It then follows that the mapping a(x) = o;(x) — o,(x)
must be a permutation of Z,,,. But summing the elements of Z,,, modulo 2m we
then have

m=m+0+(1+2m-1)+2+2m-2)+ - +(m—-1+m+1).
Thus,
m=Yx=Yo(x)=X(0(x)-0(x))=Lo(x) - Lo(x)=m-m=0.
This contradiction completes the proof. H

In contrast, in 1969 Verhoeff [12] devised a method utilizing the non-Abelian
group of order 10 that detects all single digit errors and all transposition errors
involving adjacent digits without the necessity of introducing a new character as is
the case for the ISBN method. Consider the permutation (due to S. Winters [14])
o= (0)1,4X2,3X5,6,7,8,9) and the group defined by the following multiplication
table. The group defined by the table is called the dikedral group of order 10 and is
denoted by D,,.

The Multiplication Table of D,

* 0 1 2 3 4 5 6 7 8 9
0 0 1 2 3 4 5 6 7 8 9
1 1 2 3 4 0 6 7 8 9 5
2 2 3 4 0 1 7 8 9 5 6
3 3 4 0 1 2 8 9 5 6 7
4 4 0 1 2 3 9 5 6 7 8
5 5 9 8 7 6 0 4 3 2 1
6 6 5 9 8 7 1 0 4 3 2
7 7 6 5 9 8 2 1 0 4 3
8 8 7 6 5 9 3 2 1 0 4
9 9 8 7 6 5 4 3 2 1 0

Verhoeff’s idea is to view the digits 0 to 9 as the elements of the group D,,
instead of the group Z,, and to replace check sums in Z,, with check products in
D ,. In particular, to any string of digits a,a, --- a, _,, we append the check digit
a, so that " (a))* --- xa*(a,_,)*a(a,_)*a,=0.(Here o'(x) = o(c'"(x)).
Since o is a permutation we have o'(a) # o'(b) if a # b and consequently all
single digit errors are detected. Also, because

o(ayxb+a(b)y*xaifa+b, (1)

it follows that all transposition errors involving adjacent digits are detected (since
(1) implies that o**'(a)* o'(b) # o't} (b) x o'(a) if a # b).

Many identification numbers involve both alphabetic and numeric characters,
license plate numbers and driver’s license numbers being ubiquitous examples. In
such situations we can employ the above method with D5, the dihedral group of
order 36, and o = (0, 18,1X2,17,34,3, 16, 33,4, 15,32,5, 14, 31, 6, 13, 30, 7, 12,
29,8,11,28,9, 10,27, 26,25,24, 23,22, 21,20, 19, 35) (this o is due to M. Mullin [8])
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to append a character that will detect all single position errors and all transposi-
tion errors involving adjacent digits. Say, for example, we wish to append a check
character to the Minnesota license plate number EGH 765. We identify the digits
0 through 9 with themselves and the letters 4 through Z with 10 through 35 in
order. To calculate check products using the dihedral group of order 2m we let
0,1,...,m—1 correspond to e,a,...,a™ ! and mym+1,...,2m~1 to
b,ab,...,a™ 'b. Then D, is{e,a,...,a™ ', b,ab,...,a™ " 'b} where a™ =b’=¢
(the identity) and ba* = a~*b. For example, in D, the product 23 %27 translates
to a’ba’b = a~*b? = a'*, which corresponds to 14. The dihedral group of order 2m
can be thought of as the group of plane symmetries of a regular m-gon. The
element a‘ corresponds to a rotation of i(360°/m) while the elements
b,ab,...,a™ 'b correspond to reflections about the m axes of reflective symmetry.
Alternatively, { * j can be computed as follows:

If0<i,jsm—-1,i*j=(+J)(mod m).
Ifo<i<m—-1,m<j<2m—1ix*j=m+((i +j) (mod m)).
Ifm<i<2m—-10<j<m—1,i*j=m+ (i —j) (mod m)).

Ifm<i,j<2m—1,i*j=(i—j)(mod m).

Then the plate number EGH 765 corresponds to the string 14, 16, 17, 7,6, 5 in D,
and the check character is chosen to satisfy 0 = o%(14)* o3(16)*

c*(AN* > (D * 0*(6)x o(S)*xc = 12%5x33%x8x30x14xc=8xc or ¢=10. Thus,

the check character is A.

For the alphabet alone, one can use D,, and the permutation ([14]) o=
(0X1, 12)(2, 11X3,10X4,9)5,8X6,7)13, 14,15, .. .,25).

Motivated by the observations above, it is natural to ask for which finite groups
G is there a permutation o of G with the property that o(a)b # o(b)a if a #b?
(If one is careful with parentheses, the entire discussion is sensible for Latin
squares as well as groups.) We call such a permutation an anti-symmetric mapping
of G. Interestingly, this problem was solved for Abelian groups long ago in a
different context. In 1947, L. J. Paige [9] investigated groups that have a permuta-
tion o so that ao(a)# ba(b) if a #b (such a permutation is called a complete
mapping ). In the case of an Abelian group it is easy to verify that a group has an
anti-symmetric mapping if and only if it has a complete mapping, and Paige proved
that a finite Abelian group has such a mapping if and only if its Sylow 2-subgroup
is trivial or non-cyclic.

As to which non-Abelian groups admit an anti-symmetric mapping, we have only
partial results. Matthew Mullin [8], a Princeton undergraduate student who worked
with me during the summer of 1989, has shown that all groups of odd order (in
fact, in this case, a —» a~! is anti-symmetric), dihedral groups, alternating groups,
symmetric groups (of degree at least 3), dicyclic groups and non-cyclic 2-groups
have such a mapping. He has also proved that if H is a normal subgroup of G and
both H and G/H have anti-symmetric mappings then so does G. Mullin conjec-
tures that all non-Abelian groups have anti-symmetric mappings.

Although the error detecting schemes using non-Abelian groups are more
effective than the modular arithmetic schemes, I know of no instance where a
non-Abelian group is currently in use. I have been informed that the German
“Bundesbank” intends to use a scheme based on D, for new German bank notes.
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