On a conjecture of Marimuthu et al.

Dalibor Froncek¹, Petr Kovář², Tereza Kovářová²

¹University of Minnesota Duluth, ²VŠB – TU Ostrava

Abstract

For a given digraph D = (V, A) with |V| = p, |A| = q, bijection $f : V \cup A \rightarrow \{1, 2, \ldots, p + q\}$ such that $f(V) = \{1, 2, \ldots, p\}$ is called a V-super vertex in-antimagic total (V-SVIAMT) labeling of D if the vertex weights $w(x) = f(x) + \sum_{yx \in A} f(yx)$ are all different. Marimuthu et al. [1] conjectured that all digraphs allow a V-SVIAMT labeling. We prove their conjecture.

Keywords: digraphs, antimagic labeling 2000 Mathematics Subject Classification: 05C78

1 Proof of the conjecture

Let D = (V, A) be a digraph with $V = \{v_1, v_2, \ldots, v_p\}$ and for $i = 1, 2, \ldots, p$ let $A_i = \{v_t v_i \mid v_t v_i \in A\}$ be the set of incoming arrows for vertex v_i . Let $|A_i| = d_i$. Then $A = \bigcup_{i=1}^p A_i$ and $|A| = q = d_1 + d_2 + \cdots + d_p$.

Then $A = \bigcup_{i=1}^{p} A_i$ and $|A| = q = d_1 + d_2 + \dots + d_p$. Let f be a bijection $f: V \cup A \to \{1, 2, \dots, p+q\}$ such that $f(V) = \{1, 2, \dots, p\}$. For $v_i \in V$, let $w(v_i) = f(v_i) + \sum_{v_j v_i \in A_i} f(v_j v_i)$. If the values of $w(v_i)$ are distinct for all vertices in V, then f is called a V-super vertex in-antimagic total (V-SVIAMT) labeling of D.

Conjecture 1 (Marimuthu et al., [1]). All digraphs allow a V-SVIAMT labeling.

Marimuthu et al. remarked that the following conjecture "seems to be difficult to solve." We prove the conjecture. In D = (V, A), we assume without loss of generality that $d_1 \leq d_2 \leq \cdots \leq d_p$. For each v_i we arrange the tail vertices of all d_i incoming arrows. Let S_i be the set of their subscripts. Thus, $S_i = \{i_j \mid v_{i_j}v_i \in A_i, 1 \leq j \leq d_i\}$ for $1 \leq i \leq p$. For vertices with zero in-degree is $S_i = \emptyset$. We adopt the common fact that $\sum_{m=1}^{0} d_m = 0$.

Theorem 2. All digraphs allow a V-SVIAMT labeling.

Proof. Set $f(v_i) = i$ for i = 1, 2, ..., p and $f(v_{i_j}v_i) = p + j + \sum_{m=1}^{i-1} d_m$ for i = 1, 2, ..., p and $i_j \in S_i$. Clearly, the sequence $w(v_1), w(v_2), ..., w(v_p)$ is strictly increasing and therefore D allows a V-SVIAMT labeling.

We remark that a slightly modified technique can be used to prove similar results for other types of antimagic total labelings for both directed and undirected graphs.

References

 G. Marimuthu, M.S. Raja Durga, G. Durga Devi, V-super vertex in-antimagic total labelings of digraphs, J. Graph Labeling 1 (1), 2015, 21–30.