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This paper is a study of special families of rational maps of the real plane of the form:

z 7→ zn + c+ β/zd,

where the dynamic variable z ∈ C, and C is identified with R2. The parameters c and β are com-
plex; n and d are positive integers. For β small, this family can be considered a non-holomorphic
singular perturbation of the holomorphic family z 7→ zn + c, although we will consider large
values of β as well. We focus on the special case where n = d and c = 0 because the radial
component of these maps in polar coordinates decouples from the angular component. This
reduces a significant part of the analysis to the study of a family of one-dimensional unimodal
maps. For each fixed n, the β parameter plane separates into three major regions, corresponding
to maps which have one of the following behaviors: (i) all orbits go off to infinity, (ii) only an
annulus of points stays bounded, and (iii) only a Cantor set of circles stays bounded. In cases
(ii) and (iii), there is a transitive invariant set; this set is an attractor in case (ii). The dynam-
ics of zn + β/zn is compared and contrasted to the (holomorphic) singularly perturbed maps:
z 7→ zn+λ/zn, studied by Devaney and coauthors over the last decade. Additional observations,
mostly numerical, are made about the cases where c 6= 0 and n 6= d.
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a) z3 − 0.125/z3 b) z2 + 0.25− .005/z2 c) z2 − 1− 0.001/z2

e)z3 + (0.49 + 0.049i)
d) z2 + 1 + 0.238/z2 −0.001/z3 f)z2 + i− (0.6− 0.1i)/z2

Fig. 1. Examples of escape/nonescape sets in the dynamic plane (z) for maps in the form of eq. (1). Coloring matches standard
algorithms for filled Julia sets: black indicates initial conditions corresponding to bounded orbits, other colors indicate escape
to infinity, with shading indicating the number of iterates to satisfy the escape criterion, lighter shading indicating fewer
iterates.

1. Introduction

Rational holomorphic maps of the complex plane C (or the Riemann sphere Ĉ) form a very special subset
in the more general function space of rational maps of the real plane R2 (or the one-point compactification

obtained by adding the point at infinity, which we denote by R̂2). Although the study of bifurcations of
iterated maps in the two settings has overlap, the reliance on powerful theorems in the holomorphic setting
makes the two areas seem, in some respects, to be completely distinct areas of research. In this paper, we
provide a connection between the two areas by investigating the dynamics of maps of the form

F(n,d,c,β)(z, z) = zn + c+ β/zd. (1)

The powers n and d are positive integers, and c and β are complex parameters. We shall represent β in
rectangular form as β = β1 + β2i and in polar form as β = |β|eiφ, so φ = arg(β). We study the dynamics
and associated bifurcations for the maps in this family. When β = 0, we have a holomorphic map zn + c.
Thus, for small β, this family can be considered as a (singular) perturbation of a holomorphic map of the
complex plane. The dynamics of zn + c is well-studied, especially when n = 2 or c = 0, so this gives us a
basis for comparison. It also allows us to focus on a certain subset of rational maps of the plane – in the
form of eq.(1), avoiding the very difficult task of describing the dynamics of all rational maps of the real
plane.

Since infinity is attracting for all maps in this family, the simplest starting point for a dynamical
study can be performed by numerically investigating orbits that are bounded versus those that escape
to infinity. Several dynamic plane pictures of the initial conditions corresponding to bounded orbits are



January 29, 2013 0:7 sing-ijbc

Nonholomorphic continuation 3

shown in Fig. 1. Understanding these pictures, as well as the dynamics restricted to the set of bounded
orbits, is a general goal of the study, but in this paper we focus mostly on the case where n = d and
c = 0: F(n,n,0,β)(z, z) = zn + β/zn. In this restricted family, the radial coordinate of the dynamics in polar
coordinates decouples, reducing much of the study to that of a family of negative Schwarzian unimodal
maps of an interval. This radial family behaves much like the real one-dimensional family x2 + c, with the
collection of radii having bounded orbits falling into one of three categories: the empty set (analogous to
c > 0.25), an interval containing a transitive “topological attractor” (−2.0 ≤ c ≤ 0.25), or a Cantor set on
which the dynamics is conjugate to the shift on two symbols (c < −2.0). Consequently, the set of initial
conditions corresponding to bounded orbits for the full planar maps can be empty, an annulus (look ahead
to Fig. 12(a)), or a Cantor set of circles (Fig. 1(a)). We show in this paper that when the radial map has a
chaotic attractor, that the full map of the plane also has a chaotic attractor which is the radial attractor
crossed with the circle S1.

In the β parameter plane, for every integer n ≥ 2, the region corresponding to an annulus of bounded
orbits is a “parabolic strip”, with all orbits escaping for parameter values to the right of this strip, and
a Cantor set of circles staying bounded for parameter values to the left. Look ahead to the bifurcation
diagrams in figures 3 and 7 for n = 3 and n = 2, respectively. Bifurcation curves inside the parabolic
region are roughly parallel for n ≥ 3, but are more interesting geometrically near β = 0 for n = 2. This is
consistent with the fact that n = 2 is special for the family z2 + γ/z2 [Devaney, 2012]. The case n = 1 also
has some unique properties, such as failing to have regions corresponding to c < −2.

The organization of the paper is as follows. Section 2 holds some general results for all families of
the form of eq. (1). The main analytical results are in Sec. 3, where we restrict the study to zn + β/zn.
Included in that section is an analysis of the dynamics of the radial maps, the full planar maps, and a
brief comparison of the dynamics of our maps to the dynamics for holomorphic singular continuations,
zn + λ/zn. Some generalizations are suggested in Sec. 4.

The work in this paper complements and extends ideas from previous studies of nonholomorphic (but
nonsingular) continuations of holomorphic maps [Drexler, 1996; Peckham, 1998; Peckham & Montaldi,
2000; Bielefeld, et al.; Bruin & van Noort, 2004], and singular (but holomorphic) continuations of holomor-
phic maps [Devaney, 2010, 2012; Devaney et al., 2005; Blanchard et al., 2005, 2012]. Many of the results
in the paper appeared as part of the first author’s master’s thesis [Bozyk, 2012].

2. Preliminaries

2.1. Escape criterion

It is well-known that infinity is a superattracting fixed point for zn + c for any n ≥ 2 and c ∈ C, so it
should not be surprising that infinity is still attracting for maps in the form of eq. (1). To find an explicit
escape radius, we establish the following escape criterion.

Theorem 1. Assume n ≥ 2. If |z| > max
{

41/(n−1), |β|1/(d+1), |c|
}

, then |Fn,d,c,β(z)| > 2|z|.

Proof. Since |z| > 41/(n−1), |z|n−1 > 4, so |z|n > 4|z|; since |z| > |β|1/(d+1), |β/zd| < |z|. The triangle
inequality then implies:

|Fn,d,c,β(z)| = |zn + c+ β/zd| ≥ |z|n − |c| − |β/zd| > 4|z| − |z| − |z| = 2|z|.
�

This escape criterion could clearly be improved by requiring |F (z)| > a|z| with a < 2 but still greater than
1. This theorem, however, is sufficient for our numerical experiments.

2.2. Symmetry

There is an obvious symmetry relating conjugate parameters: Fn,d,c,β(z) = Fn,d,c,β(z). This implies that
maps with conjugate parameters with have conjugate dynamic space behavior. In the case where c is real,
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this will require β parameter space diagrams, when all other parameters are fixed, to be symmetric about
the real axis. A similar symmetry can be verified to be Fn,d,ceinω ,βei(n−d)ω(zeiω) = Fn,d,c,β(z)einω. This has
consequences for certain choices of ω, especially when c = 0 or n = d, but we shall not investigate them
fully here. When both c = 0 and n = d, this gives Fn,d,0,β(zeiω) = Fn,d,0,β(z)einω, which shows the radial
decoupling which we will obtain by more direct computation in Sec. 3.

2.3. Coordinates

Our family in eq. (1) is written in (z, z) coordinates. This can be converted into standard rectangular
coordinates in the usual way: z = x + iy ∈ C ↔ (x, y) ∈ R2; z = x − iy. Similarly, F (z) ∈ C ↔
(Re(F (z)), Im(F (z))) ∈ R2.

The Jacobian matrix can be computed directly in (x, y) coordinates, but the use of “(z, z) coordinates
provides a computational shortcut. We view z and z as independent complex coordinates, think of F (z)

as F (z, z), and extend the map F to (F, F ), where F (z, z) ≡ F (z, z). For our model family in eq. (1),

F (z, z) = zn + c+ β
zd

. The Jacobian matrix is the 2× 2 matrix ∂(F,F )
∂z∂z . We will use this in our computation

of “critical sets” below. (This computation is justified by starting with (x, y) ∈ R2, complexifying to view
(x, y) ∈ C2, performing the change of variables from (x, y) ∈ C2 to (z, w) ∈ C2 defined by x = (z + w)/2
and y = (z − w)/(2i), and noticing that restricting x and y to be real is equivalent to setting w = z.)

2.4. Critical Sets

For rational (holomorphic) maps of Ĉ, it has been well-established that the critical orbits play a key role in
determining the dynamics of all orbits. The same thing is true for maps of R2. (See [Mira & Narayaninsamy,
1993], for example.) In these maps, the critical set, denoted J0 in the literature, is defined by the dynamic
space points for which the Jacobian determinant is zero.

Proposition 1. The critical set J0 for family Fn,d,c,β is a circle of radius

r =

(
d

n
|β|
) 1
n+d

.

Proof. This follows from a direct computation of the Jacobian determinant. Using the (z, z) coordinates as

suggested in subsection 2.3, the Jacobian determinant becomes ∂(F,F )
∂z∂z =

(
nzn−1 −βdz−d−1
−βdz−d−1 nzn−1

)
. Setting

the Jacobian determinant equal to zero results in n2|z|2n−2 − d2|β|2 1
|z|2d+2 = 0. Letting z = reiθ, taking

square roots, and solving for r results in the desired formula. �

3. Case with radial symmetry: n = d and c = 0

The main results of the paper are in this section. We restrict the general family Fn,d,c,β of eq. (1) by setting
c = 0 and n = d. We will denote such maps Fn,n,0,β as Fn,β. The maps now takes the form

Fn,β(z) = zn +
β

zn
(2)

Substituting z = reiθ, eq. (2) becomes:

Fn,β

(
reiθ

)
=
(
reiθ

)n
+

β

(re−iθ)
n =

(
rn +

β

rn

)
einθ =

(
rn +

β1
rn

+ i
β2
rn

)
einθ (3)

where β = β1 + iβ2. From this form it is clear that the radial component decouples from the angular
component. We compute the polar coordinate version of eq. (2), which we will call Pn,β, to be:
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Pn,β

(
r
θ

)
=

(
Mn,β (r)
An,β (r, θ)

)
=

√r2n + 2β1 +
β2
1+β

2
2

r2n

nθ +Arg
(
rn + β

rn

) . (4)

We call the radial componentMn,β the modulus map, and An,β the angular map. Studying the dynamics of
Pn,β is the main goal of this paper. Pn,β and Fn,β are, of course, dynamically conjugate. We have the usual
polar coordinate identifications that (0, θ) is the origin for any θ, and (r, θ) is identified with (r, θ + 2π).

3.1. The modulus map

a) b) c)

d) e) f)

Fig. 2. Six graphs and critical orbits for M̃3,β for β values along the ray φ = arg(β) = π/3. Key β values are chosen to
illustrate the universal period-doubling route to chaos. These points are highlighted on the image of the parameter plane for
n = 3 below, in Figure 3b. The right-hand endpoint of the interval I3,β , determined by the dashed boxes in b-f, is p+, while
the left-hand endpoint is τ(p+). Notice that the behaviors indicated by the graphical iteration are the same as those for x2 +c.
a) all orbits escape, b) saddle-node (tangent) bifurcation point, c) superattracting fixed point, d) superattracting period-three
orbit, e) critical orbit prefixed (after two iterates), f) critical orbit escapes, Cantor set contained in A0

⋃
A1 left bounded.

Notation: B is (if extended to infinity) the immediate basin of infinity; T (in b-f) is the “trap door” [Devaney, 2010], mapping
to B; G (only in f) maps to T ; I is the invariant interval I3,β .

In this section we study the modulus map Mn,β and a slighty simpler conjugate M̃n,β. Note that we
can assume Mn,β : [0,∞] → [0,∞] by defining Mn,β(∞) = ∞ and, for β 6= 0, Mn,β(0) = ∞, to extend
the domain and range to include ∞; Mn,β is continuous on [0,∞] (in the usual order topology). Mn,β is
a unimodal map for all n ≥ 1 and β 6= 0. Its unique critical point, which is a local minimum, can be easily
computed to be r = |β|1/2n.

In order to eliminate the square root in the formula forM in eq. (4), we conjugate via the homeomor-
phism s = h(r) = r2, defined on [0,∞]. This leads us to a conjugate map we call M̃n,β, abbreviated by M̃
when the parameters are either not necessary to specify or clear by context, defined on [0,∞] by

M̃n,β(s) = h−1 ◦Mn,β ◦ h(s) = sn + 2β1 +
β21 + β22
sn

= sn + 2|β| cos(φ) +
|β|2

sn
. (5)

The M̃n,β maps are still unimodal, with minimum at s = |β|1/n, but they have the advantage of
being smooth (even analytic) on (0,∞), even though Mn,β can fail to be differentiable at its criti-

cal point when the critical point maps to zero (when β1 < 0 and β2 = 0). In addition, the M̃n,β
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maps are “negative Schwarzian”, even though the Mn,β maps are not. This can be verified by recall-

ing that the Schwarzian derivative Sf(x) = f ′′′(x)
f ′(s) −

3
2

(
f ′′(s)
f ′(s)

)2
, and computing and simplifying to obtain

SM̃(s) = (1−n2)(|β|4+s4n)−2(1+5n2)|β|2s2n
2s2(|β|2−s2n)2 . For β 6= 0, and any n ≥ 1, this expression is negative for s ∈ [0,∞],

as long as s 6= |β|1/n, the unique critical point. This allows us to quote some powerful theorems from one-
dimensional dynamics [Guckenheimer J, 1979; de Melo & van Strein, 1993; Kraft, 2012]. Specifically, each
map M̃n,β with n ≥ 2 and β 6= 0 is topologically conjugate to Qc(x) = x2 + c for some c. Since M is

conjugate to M̃,Mn,β is also conjugate to x2 + c for these β values. As we shall detail later in the section,
the role of decreasing c for x2 + c can be played either by decreasing β1 for any fixed β2, by decreasing
|β| for any fixed φ other than π, or by increasing φ from 0 to π. Representative graphs of M̃, with n = 3,
located along a ray in the parameter plane, are shown below in Fig. 2.

We will use the following notation in the rest of the paper.

• The unique critical point: cn,β; its iterates: M̃j
n,β(cn,β) = cn,βj . When parameters are clear, notation is

shortened to cβj or cj .

• The critical itinerary: s = (sj) where j = 0, 1, 2, ..., and

sj =


L : cn,βj < cn,β

C : cn,βj = cn,β

R : cn,βj > cn,β

When the critical orbit is periodic of period q, we write its itinerary as Cs1s2...sq−1.

• The fixed points of M̃n,β (when they exist): pn,β− ≤ pn,β+ . When parameters are clear, notation is shortened

to pβ+ or p+.

• The “interval of interest”: In,β = [τ(pn,β+ ), pn,β+ ], where τ maps a point in [0,∞] to its “companion point”

having the same image under M̃n,β; note that τ(cn,β) = cn,β. In particular, M̃n,β(τ(pn,β+ )) = pn,β+ . This

interval exists whenever pn,β+ exists; it is invariant if and only if cn,β2 ≤ pn,β+ (equivalently cn,β1 ≥ τ(pn,β+ )).
See Fig. 2f where the interval is not invariant.
• K(M̃n,β) is the set of all initial conditions in [0,∞] for which the corresonding orbit remains bounded.

• J(M̃n,β) = ∂K(M̃n,β)
• K(Fn,β) and J(Fn,β) are the analogous sets for the full map of eq. (1) in the plane. The notation is chosen

to match the standard notation for the filled Julia sets and Julia sets, respectively, from complex dynamics.
We caution the reader that the usual properties of filled Julia sets and Julia sets do not necessarily extend
to real planar maps.
• PSn is the subset of the β parameter plane for power parameter n for which the corresponding critical

orbit is bounded. The notation is chosen to suggest either “parameter space”, or “parabolic strip.” This is
analogous to the Mandelbrot set for complex quadratic maps.
• Bifurcation sets contained in PSn in the β parameter plane: SNqn, PDqn, SAqn, PFqn represent, re-

spectively, saddle-node, period-doubling, superatttracting, and prefixed parameter values for period-q and
power parameter n. These sets are typically curves, or unions of curves in PSn. Different period-q curves
could be distinguished further by the critical itinerary, but we do not always do so in this paper.

3.1.1. The β parameter plane for n = 3.

We begin with a description of the n = 3 parameter plane. The parameter planes for n > 3 are topo-
logically and geometrically similar. The parameter plane for n = 2 is almost the same topologically, but
quite different geometrically, especially near β = 0. We will deal with the n = 2 geometry below. For
completeness, n = 1 also is treated as a special case below.

A coarse division of the parameter plane is obtained by performing numerical escape experiments for
the critical orbit in the β plane. The resulting “parabolic strip” is displayed in Fig. 3(a). A finer division
is given by numerically computed bifurcation curves in the strip. One of the curves, the superattracting
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fixed-point curve, denoted SA13, has an explicit formula which we give in eq. (7) for general n below. The
results are displayed in Fig. 3(b).

a

b

c

d
e

f

-0.1 -0.05 0.05 0.1 0.15 0.2 Β1

-0.2

-0.1

0.1

0.2

0.3

Β2

a) b)

Fig. 3. The parabolic strip PS3 in the β parameter plane for M̃3,β . a) Escape experiments: black corresponds to bounded
critical orbits; colored regions correspond to escaping critical orbits, with lighter colors having faster rates of escape. The red
curve of superattracting fixed points is traced out by the polar coordinate curve: |β| = 1/(2(1 + cos(φ)))3/2; β ∈ [−2.5, 0.5]×
[−1.5, 1.5] i. b) An enlargement showing several numerically computed bifurcation curves in the parabolic strip; shown are,
right to left, the fixed-point saddle-node right-hand boundary of the strip (green), the fixed-point superattracting curve SA13
(red), the fixed-point period-doubing curve (blue), the period-2, 3, 4 superattracting curves SA23, SA33, SA43 (all red), and
prefixed point curve on the left-hand boundary (purple). (Note that the period-k superattracting curves are not unique for
k ≥ 4 since, for these k, there are multiple “period-k windows” for x2 + c.) Along the ray φ = π/3 are the six parameter values
a-f whose graphical iterations are displayed in Figure 2.

The boundaries of the nonescape region PS3 were numerically confirmed by continuing [Peckham,
1988-2012] the right-hand boundary as a fixed-point saddle-node curve, and the left-hand boundary as a

prefixed point curve (cn,β2 = pn,β+ ). (The prefixed points are also classified as degenerate homoclinic points
[Devaney, 1986].) We show several graphical iteration diagrams for parameter values along a “π/3” ray.
See the ray in Fig. 3, and the corrreponding graphs and iterations in Fig. 2.

For β values to the right of the strip, all orbits escape to infinity monotonically (not just the critical

orbit); for β values in the black parabolic strip, only the invariant interval I3,β = [τ(p3,β+ ), p3,β+ ] stays
bounded; for β values to the left of the strip, the critical orbit escapes to infinity (monotonically after the
first iterate), but a Cantor set of s values stays bounded. This is analogous to the behavior of iterations
of x2 + c, where for c > 1/4, all orbits go off to infinity, for −2 < c < 1/4, only a closed interval stays
bounded, and for c < −2, a Cantor set of points stays bounded. Numerically, it appears that crossing the
parabolic strip from right to left in any of the following ways corresponds to decreasing c from 1/4 to −2
for the quadratic family x2 + c: along a ray to the origin, horizontally by decreasing β1, or on a constant
|β| circle from φ = 0 to φ = π (for |β| > βsn1 , where βsn1 is the saddle-node parameter value on the β1 axis;
see Fig. 3b where β1 is seen to be approximately 0.15. More generally, any curve passing through both
boundaries of PS3 is a “full family”

3.1.2. The β parameter plane for n > 3.

Numerical investigation suggests that the geometry of the β parameter planes for n > 3 is qualitatively
similar to the geometry of the n = 3 parameter plane: the strip boundaries and all of the interior bifurcation
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curves are roughly parallel. As n increases, the width of the strip shrinks toward zero. The strips and all
the bifurcation curves in it limit to the same parabola: x = −y2 +1/4. See Figures 4 and 5. This statement
is supported by the following arguments.

The critical orbit. Straightforward computation using the map definition in eq. (5) shows the first
two iterates of the critical orbit are:

|β|1/n 7→ 2|β|(1 + cos(φ)) 7→ (2|β|(1 + cos(φ)))n + 2|β| cos(φ) +
|β|2

(2|β|(1 + cos(φ)))n
(6)

Note that when φ = π, the critical value is zero, and the second iterate is infinity.
The parabolic superattracting fixed point limit as n → ∞. The superattracting fixed point

parameter set SA1n (maps conjugate to x2 + 0) can be explicitly expressed parametrically in polar coor-
dinates by requiring the critical point |β|1/n to be mapped to itself using eq. (6), and solving for |β|. The
result is:

SA1n =

{
|β|eiφ : |β| =

(
1

2(1 + cos(φ))

) n
n−1

}
(φ 6= π) (7)

As n → ∞, n
n−1 limits to 1, and the above equation is the polar coordinate version of the parabola

x = −y2 + 1/4. See Fig. 4.

-1.0 -0.8 -0.6 -0.4 -0.2 0.2
Β1

-1.5

-1.0

-0.5

0.5

1.0

1.5

Β2

Fig. 4. Superattracting fixed point parameter curves for powers n = 2, 3, 4, 5, 6, 20, left to right as they intersect along the
β1 axis, and the limiting parabola (black) as n→∞. The curves all pass through (|β|, φ) = (1,± 2π

3 ).

Width of the strip decreases as n→∞. For this argument, we provide only framework of a proof.
We will consider what happens as we approach the origin along a fixed ray arg(β) = φ. Passing through
the strip is analogous to decreasing c in x2 + c from 0.25 to −2.0. That is, the graph of M̃n,β decreases
from its saddle-node tangency to its prefixed critical orbit configuration. The effect of increasing n in the
formula for the maps M̃n,β is to make the corresponding unimodal maps steeper. See Fig. 6. Let βsn(n) and
βpf (n) be the respective saddle-node and prefixed bifurcation β values for each n. The increasing steepness

of the graphs as n increases causes the length of the invariant interval In,β
pf (n), at the corresponding

prefixed bifurcation point for each n, to shrink to zero. The critical value, however, is independent of n:

cn,β2 = 2|β|(1 + cos(φ)). Consequently, as |β| decreases, the critical value decreases at the same rate for
any n. This combination forces the length of [|βpf (n)|, |βsn(n)|] shrink to zero as n → ∞. Actually, both
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|βpf (n)| and |βsn(n)| approach the same point on the limiting parabola 1
2(1+cos(φ)) as n increases. See

Fig. 5. We conclude that all the bifurcation curves inside the parabolic strip approach (pointwise) this
same limiting parabola as n→∞. This justifies our use of the “parabolic strip” terminology.

-0.6 -0.4 -0.2 0.2
Β1

-0.2

0.2

0.4

0.6

0.8

Β2

-0.6 -0.4 -0.2 0.2
Β1

-0.2

0.2

0.4

0.6

0.8

Β2

-0.6 -0.4 -0.2 0.2
Β1

-0.2

0.2

0.4

0.6

0.8

Β2

a) n=3 b) n=4 c) n=20

Fig. 5. Graph of parabolic strip boundaries in the β plane: right saddle-node boundary SN1n (green), left prefixed critical
point boundary PF1n (purple) for n = 3, 4, 20. The of the strips shrinks to zero as n → ∞; both left and right boundaries
approach the limiting black parabola. By n = 20, the strip is too thin to distinguish the boundary curves from each other,
and both curves are very close to the limiting parabola.

0.0 0.5 1.0 1.5 2.0
s

0.5

1.0

1.5

2.0
M
�

Fig. 6. Graph of M̃n,β(s) versus s for β = 0.25, and n varying: 2 (green), 3 (blue), 4 (red), 6 (green), 7 (blue), 10 (red), 100

(black). The “width” of the unimodal maps narrows to zero as n→∞. All graphs pass through (s,M̃n,0.25(s)) = (1, 1 9
16 )

3.1.3. The β parameter plane for n = 2.

The topology of the parabolic strip and its bifurcation curves in the β plane for n = 2 is identical to the
topology of the strips and curves for n > 2 except for one point: the origin. The origin is in the strip since
the critical point s = 0 for M̃2,0(s) = s2 is fixed and therefore bounded. The critical orbit for β = 0 is

fixed at p2,0− = 0; it does not land on p2,0+ = 1 on the second iterate as is the case for all other maps on the

left-hand boundary of the strip. This “inconsistency” is possible because the family of maps M̃2,β has a

discontinuity when both s and β are zero: M̃2,β(0) =∞ for β 6= 0, but M̃2,0(0) = 0.
All other bifurcation curves (SNk2, PDk2, SAk2, PFk2) pass through the strip smoothly, but the

geometry of the bifurcation curves near the origin is clearly different from the n > 2 cases. Although it is
not clear from Fig. 7, all the bifurcation curves except PF12 cross the β1 axis with positive β1 value. We
justify this statement below, with both numerical continuation and analytic arguments. Another way of
stating these results is: any path through the n = 2 parabolic strip from right to left that does not pass
through the origin is a “full family” (that is, contains all bifurcations present in x2 + c for c ∈ [−2, .25]). If
the path exits through the origin, it contains all bifurcations except the prefixed bifurcation corresponding
to c = −2. These statements are justified by the following Proposition.

Proposition 2. Consider the β = |β|eiφ parameter plane for the maps M̃2,β defined in eq. (5). Let PS2 be
the set of all parameter values for which the critical orbit stays bounded.
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-0.1

0.1
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a) b)

Fig. 7. The β parameter plane for n = 2. a) colored by escape times; black denotes bounded critical orbit. b) bifurcation
curves through the parabolic strip: right to left: fixed-point saddle-node SN12 (green), superattracting fixed point SA12 (red),
fixed point period-doubling (blue), superattracting period-2 SA22 (red), superattracting period-3 SA32 (red), superattracting
period-4 SA42 (red), prefixed critical orbit PF12 (cyan). The two black line segments at β2 = 0 and β2 = 0.1 correspond to
the one-parameter orbit diagrams in Fig. 9.

(1) Along constant φ rays:

(a) If φ = π, β 6∈ PS2.
(b) If φ ∈ [−2π

3 ,
2π
3 ], then for all sufficiently small |β|, β ∈ PS2.

(c) If φ ∈ (2π3 ,
4π
3 ), then for all sufficiently small |β|, β 6∈ PS2.

(2) Along each constant φ ray with φ 6= π is a sequence of parameters β1, β2, ..., βq, ... corresponding to
superattracting period-q orbits, SAq2, with |β1| > |β2| > ... > |βq| > ... > 0. These superattracting

period-q orbits have itineraries CLRq−2.
(3) For fixed φ 6= π, there is a (saddle-node) parameter value βsn = |βsn|eiφ, satisfying |βsn| > |βq| for all

q, for which M̃2,β has a neutral fixed point with derivative one.
(4) For fixed φ ∈ (2π3 ,

4π
3 )\{π} there is a β = βpf satisfying 0 < |βpf | < |βq| for all natural numbers q for

which the critical orbit is prefixed at pβ+ after two iterates. For φ ∈ [−2π3 , 2π3 ] there is no β for which

the critical orbit is prefixed at pβ+. The set of all such points β = βpf (φ) for φ ∈ (2π3 ,
4π
3 )\{π}, together

with the origin, forms the left-hand boundary of PS2.

Proof.

(1) The proofs depend on inspection of the first two iterates of the critical point, given in eq. (6). When

the critical value cβ1 is less than the critical point cβ0 , then pβ+ exists. When the second iterate of the

critical point, cβ2 , is less than or equal to the fixed point pβ+, β ∈ PS2; if cβ2 > pβ+, then β 6∈ PS2.

(a) If φ = π, then c1 = 0 < c0 =
√
|β|, and cβ2 =∞ > pβ+, and the critical orbit escapes.

(b) Fix φ ∈ [0, 2π3 ]. Once the result is established for these φ, symmetry will automatically give the

result for φ ∈ [−2π
3 , 0). If φ = 0, the second iterate of the critical point is cβ2 = 16β21 + 2β1 + 1

16

which approaches 1
16 as |β| ↘ 0. Meanwhile, the fixed point pβ+ approaches 1. So for sufficiently

small |β|, cβ2 < pβ+. If φ 6= 0, the second iterate cβ2 approaches 1
4(1+cos(φ))2

which is still less than

1 provided φ ∈ [0, 2π3 ). For φ = 2π
3 , cβ2 limits to one, but the limit is approached from below (set
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φ = ±2π
3 in eq. (6) to get cβ2 = |β| − |β|2 + 1), and the right hand fixed point approaches 1 from

above (since M̃2,β(1) = 1− |β|+ |β2| is less than one for small |β|, pβ+ must be greater than one.)

So for sufficiently small |β|, cβ2 < pβ+.

(c) Fix φ ∈ (2π3 , π). the second iterate cβ2 approaches 1
4(1+cos(φ))2

which is now greater than one, so for

sufficiently small |β|, cβ2 > pβ+.

(2) For q = 1, there is an explicit formula for |β| as a function of φ (for φ 6= π): eq. (7). For q = 2, the
result can be established using basic calculus techniques to show the graphs of c0 and c2 as functions of
|β| have exactly two positive intersections. The larger corresponds to the superattracting fixed critical
orbit, and the smaller must be the (unique) superattracting period-2. Details are left to the reader.
We will use induction to establish the result for q > 2.
Assume the result is true for q = N ≥ 2. Then there is a parameter value βN for which the critical

orbit is period-N . For any β, denote the critical point by cβ0 =
√
|β|, and its iterates by cβi . Since

M̃2,βN has a periodic critical oribt, it must be true that M̃2,β(s) < s for all s ∈ [cβ
N

0 , pβ
N

+ ]. In
particular, this inequality must be true for all points on the critical orbit with itinerary R. Then the

points on the critical oribit must be ordered cβ
N

1 = cβ
N

N+1 < cβ
N

0 = cβ
N

N < cβ
N

N−1 < ... < cβ
N

3 < cβ
N

2 .

Therefore, M̃N+1
2,βN

(cβ
N

0 ) = cβ
N

1 so M̃N+1
2,βN

(cβ
N

0 ) < cβ
N

0 . On the other hand, as |β| ↘ 0, cβ2 → 1
4(1+cos(φ))2

,

and M̃2,β(s) → s2, so cβN approaches 1

4(1+cos(φ))2N
> 0. Meanwhile, cβ0 =

√
|β| → 0, so for β = β∗

sufficiently small, M̃N+1
2,β∗ (cβ

∗

0 ) = cβ
∗

N+1 > cβ
∗

0 . This forces the order of the beginning of the critical orbit

– which need not be periodic – to be cβ
∗

1 < cβ
∗

0 < cβ
∗

N+1 < cβ
∗

N < ... < cβ
∗

3 < cβ
∗

2 .

The intermediate value theorem now guarantees the existence of a βN+1 with 0 < |β|∗ < |βN+1| < |βN |
for which the cβ

N+1

N+1 = cβ
N+1

0 , so the critical orbit is period-(N + 1). Numerical evidence suggests that

there is a unique such βN+1, but if not, choose βN+1 to make |βN+1| the smallest such β. The order of

{cβ0 , ..., c
β
N} does not change as |β| increases from |β∗| to |βN+1|, so we have cβ

N+1

1 < cβ
N+1

0 = cβ
N+1

N+1 <

cβ
N+1

N < ... < cβ
N+1

3 < cβ
N+1

2 and therefore at β = βN+1, the critical orbit has (periodic) itinerary

CLRN−1.
(3) The fixed-point saddle-node curve SN12 is given by the solution to the system M̃2,|β|eiφ(s) = s and

M̃′
2,|β|eiφ(s) = 1. This pair of equations can be shown to have an explicit parametric solution in terms of

the phase variable s. The second equation can be solved for |β| as a function of s, and then substituted

into the first equation to solve for cos(φ) as a function of s: (|β|, cos(φ)) = (
√
s4 − s3/2, 3−4s√

16s2−8s)

for s ∈ [9/16,∞). (For s < 9/16, a solution would require cos(φ) > 1.) As s increases from 9/16
toward ∞, |β| increases from 27/256 toward ∞, and cos(φ) simultaneously decreases from 1 toward
−1. Correspondingly, φ increases from 0 toward π. Both functions are monotonic in s. This establishes
the result. Note that this computation shows that the green saddle-node curve in Fig. 7b crosses the
β1 axis at exactly 27/256 ≈ 0.1.

(4) For φ ∈ (2π3 ,
4π
3 )\{π}, the result is also an immediate consequence of the intermediate value theorem.

By the proof of 1(c), sufficiently small |β|, cβ2 > pβ+, but for βn (for any n) cβ
n

2 < pβ
n

+ . So cβ2 = pβ+ for

some β with intermediate |β|. For φ ∈ [−2π3 , 2π3 ], the proof of 1(b) shows cβ2 < pβ+, so we never get a

prefixed point, which would require cβ2 = pβ+, along these rays.

�

This proposition has the following consequences.
Topology: Proposition 2 indicates that the topology of PS2 is identical to that of PSn for all other n

values, with the exception of one point: the map corresponding to the origin in PS2 does not correspond to
the PFn point in PSn on the β1 axix for n > 2 . This claim is a corollary of the proposition by noting that
continuously varying one-parameter families of unimodal maps are “full families” if they include both a
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saddle-node map and a prefixed critical orbit. Continuity guarantees the existence of all “in between” maps.
(There is an ordering on the itineraries of critical orbits which we will not define here. See, for example,
the discussion on kneading sequences in [Devaney, 1986].) In terms of critical itineraries, these itineraries
vary from CR (the fixed-point saddle-node itinerary) through CLR (the prefixed itinerary). Continuity

guarantees all critical itinieraries in between. Since the critical itineraries CLRq−2 limit to CLR, then, by
continuity, all itineraries in a full family are realized execept CLR itself. Numerical investigation suggests
that the critical itineraries vary monotonically with respect to this critical itinerary along any ray, be we
have not proved this. Itineraries also appear numerically to vary monotonically along constant β2 lines.
They also vary monotonically along constant |β| circles since changing φ only changes M̃n,|β|eiφ by a

constant. In terms of conjugacies with x2 + c, in crossing PSn in any of these three types of paths, there
exists a parameter space map c = h(β) (which we conjecture can be made one-to-one) for which M̃2,β is
congugate to x2 + h(β).

Geometry: The results in part (1) of Prop. 2 are consistent with the numerical continuations which
show the left boundary of the parabolic strip PS2 approaching the origin tangent to φ = ±2π

3 . The nearby
bifurcation curves SAq2 all come from the second quadrant into the first, and then swing back toward
the origin, crossing the β1 axis with positive β1 value, as guaranteed by Prop. 2, part (2). This is evident
in Fig. 7b from the two “middle” curves, SA12 and PD12. It is evident for SA3 and SA4 only in the
enlargements of Fig. 8. The curves in these enlargements are obtained as an approximation to the SAq2
curves by looking more carefully at the proof of 1(b). We noticed there that, for φ ∈ [0, 2π3 ), cβ2 approaches

1
(2(1+cos(φ)))2

, as |β| ↘ 0. Since M̃2,0(s) = s2, cβk ≈
1

(2(1+cos(φ)))2k−1 for k ≥ 2. Using c0 =
√
|β|, c0 = ck

leads to |β| ≈ 1

(2(1+cos(φ)))2k
for k ≥ 2, although we have not formally justified this approximation.

Scaling of the orbit diagrams. The locations of the superattracting curves SAq2 in the parabolic
strip means that the standard orbit diagrams that one can compute in passing from right to left across
the parabolic strip PS2 have a different scaling at the left-hand boundary, depending on whether the path
across the strip passes through the origin. More specifically, the spacing of the superattracting curves SAq2
near the left hand boundary is asymptotically linear for curves not passing through the origin, with constant

which can be shown to be equal to the reciprocal of the eigenvalue λ of the fixed point pn,β
PF

+ . That is,
|βn+1−βn|
|βn−βn−1| → 1/λ. This convergence, however, is asymptotically quadratic for curves passing through the

origin. Compare the two orbit diagrams for two horizontal slices, one which goes through the origin (β1 = 0),
and one which doesn’t (β1 = 0.1) in Fig. 9. In Fig. 9a, width of the whole diagram is approximately 0.1,
but the period-3 superattracting parameter value is β1 ≈ 1.5× 10−5, so the usual orbit diagram from the
usually prominent period-3 window through the prefixed critical orbit parameter value, is compressed into
this tiny interval, and therefore not really visible at all. In Fig. 9b, the orbit diagram appears more typical,
with the usually prominent period three window clearly visible.

3.1.4. The β parameter plane for n = 1.

The maps are still unimodal and M̃1,β(s) = s+2|β| cos(φ)+ |β|
2

s = s+2β1+ |β|
2

s is still negative Schwarzian.
Infinity is still a fixed point, but the escape criterion in Theorem 1 does not apply; the derivative at infinity
is zero: infinity is weakly attracting if β1 ≥ 0 (that is, φ ∈ [−π/2, π/2]), but weakly repelling if β1 < 0.
The companion point τ(∞) = 0 since M̃1,β(0) =∞ for β 6= 0.

Maps along rays from the origin in the β plane are all conjugate: the rescaling u = s/|β| conjugates
M̃n,|β| cos(φ) to M̃n,cos(φ), so all bifurcation curves are rays from the origin as well. The bifurcation curves
in the β parameter space are analogous to those for n > 1, with some minor adjustments in interpretation,
like thinking of the fixed point at infinity as a finite fixed point. If β1 > 0, then M̃n,β(s) > s for all s, and
all orbits escape to infinity; no finite fixed point exists. If β1 < 0, then there is a unique finite fixed point

at s = −β2
1+β

2
2

2β1
= p−, while ∞ more naturally corresponds to p+. For n = 1, following the unit circle in the

β plane from φ = π/2 to π corresponds to crossing the parabolic strips for n > 1 from right to left in the
upper half plane. The ray φ = π/2 corresponds to a saddle-node fixed point (at infinity). This is justified
since, as φ → π/2+, the finite fixed point p− approaches the “other” fixed point at p+ = ∞. The ray
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c) Period-3 enlargement d) Period-4 enlargement

Fig. 8. The geometry of the superattracting period-3 and period-4 curves in the β parameter plane for n = 2. Solid lines are
the approximations |β| ≈ 1

(2(1+cos(φ)))2k−1 ; points in a and b are numerically computed SA3 and SA4 points, respectively.

We do not show the curves for negative β2, but recall they are symmetric across the β1 axis.

a) β2 = 0 b) β2 = 0.1

Fig. 9. Orbit diagrams - s versus β1 for two one-parameter cuts through PS2 (for z2 + β/z2). See black line segments
corresponding to these one-parameter cuts in Fig. 7. a) the orbit diagram along the β1 axis is extremely “compressed” toward
the left side, b) the orbit diagram looks more “standard”, like the orbit diagram for x2 + c.

φ = 2π/3 has superattracting fixed points. The ray φ = 3π/4 has the period-doubling fixed points (with
eigenvalue negative one). The ray φ = π corresponds to a critical orbit which is fixed (at infinity) after two
iterates: |β| 7→ 0 7→ ∞. As for all n, the symmetry of the β plane requires complex conjugate parameter
values to have dynamically conjugate behavior. The “Cantor set region,” to the left of the parabolic strips
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All orbits escape
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Fig. 10. The parameter plane for n = 1. Bifurcation curves are all rays from the origin. The “parabolic strip” is the left half
plane. Bifurcation curves counterclockwise through the second quadrant: fixed point period-doubling (blue), fixed-point saddle-
node SN11 (green), superattracting fixed point SA11 (red), superattracting period-2 SA21 (red), superattracting period-3
SA31 (red), superattracting period-4 SA41 (red), prefixed critical orbit (at infinity) PF11 (cyan).

for n > 1, does not exist at all for n = 1.

3.1.5. Modulus Map Dynamics

The dynamics of unimodal maps is nontrivial, but well-established, especially since there are no wander-
ing intervals (guaranteed by being negative Schwarzian). We provide only a limited summary here. See
[Guckenheimer J, 1979; de Melo & van Strein, 1993], for example, for details.

For parameter values to the right of the parabolic strips (for n ≥ 2), all orbits escape to infinity. For
parameter values to the left of the strip, where the set of bounded orbits is a (measure zero) Cantor set,
the dynamics is equivalent to the full shift on two symbols. For parameter values in the parabolic strip,

the bounded set is the invariant interval, In,β = [τ(pn,β+ ), pn,β+ ], and unimodal map results [de Melo & van
Strein, 1993] guarantee the radial map dynamics has one of three transitive topological attractor types:
periodic, Cantor set (at the ‘Feigenbaum parameter values’), or a finite union of intervals (at parameter
values where the critical orbit is preperiodic). (De Melo and van Strein [1993] define a set A ⊂ In,β to be a
topological attractor if it is forward invariant, cl(B(A)) contains intervals, and cl(B(A))\cl(B(A′)) contain
intervals whenever A′ is a forward invariant set strictly contained in A. The basin B(A) is the set of all
points in I whose omega limit set is contained in A.) In this classification, saddle-node bifurcation points
and period-doubling points, as well as parameter values corresponding to hyperbolic periodic orbits, are
included in the ‘periodic attractor’ parameter set. The attractor in the ‘finite union of intervals’ set admits
chaotic dynamics, with transitive behavior and a dense set of periodic points; the dynamics is a generalized
version of the chaotic dynamics present for x2− 2 on [−2, 2]. The dynamics on the attracting Cantor set is
conjugate to an “adding machine.” (Note that this dynamical description is quite different from dynamics
on the Cantor set for parameter values to the left of the parabolic strips.) The attracting Cantor set is
known to be a minimal set, with no closed, invariant subsets. In particular, there exist no periodic orbits.
So the dynamics is transitive, but clearly without a dense set of periodic points. Using the definition of
chaotic dynamics as being both transitive and having a dense set of periodic points with more than one
periodic orbit, only the finite union of intervals case admits chaotic behavior.

3.2. Full dynamics in the plane

We finally are ready to address on of the main goals of the paper: describing the dynamics of the full planar
map Pn,β of eq. (4). The behavior of the modulus mapM (or its conjugate M̃) completely determines the
orbits which are bounded versus escape orbits for Pn,β. It also gives a lot of information about the dynamics
of the bounded orbits as well. To understand the full planar dynamics, we need to look more closely at

the angular map An,β, defined in eq. (4) as An,β(θ) = nθ+Arg
(
rn + β

rn

)
. (Since we have established the

dynamics of the radial mapM via its conjugate M̃, we return to using the original map,M to describe the
full planar dynamics. To obtain the correponding results in terms of the conjugate map M̃, the variable
r can be replaced by s1/2.) Although this map is dependent on both r and θ, the dependence on r is in
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a simple way. Denoting the kth iterate of the radial map M by rk, it is easy to show that the angular
coordinate of the kth iterate of the full planar map has the following formula:

θk ≡ Akn,β(θ0) = nkθ0 +
k−1∑
i=0

niArg

(
rk−1−i +

β

rnk−1−i

)
(8)

Since ri is independent of θ, the kth iterate of the angular map merely sends θ to nkθ plus a radially
dependent translation. This translation is zero when β is real and positive. The proofs establishing that
certain of the Pn,β maps are chaotic turn out to be only marginally more difficult than showing that θ 7→ nθ
is chaotic as a map of S1. More specifically, we have the following lemma.

Lemma 1. Assume the orbit of r0 is bounded under iteration by Mn,β. Consider the arc S = {r0}× (θ0−
ε, θ0 + ε) for any fixed ε > 0. There exists a K ∈ N such that for all k ≥ K, P kn,β(S) is a full circle in the
plane.

Note: We restrict to bounded orbits primarily to make sure that rk 6= 0 or ∞.

Proof. Choose K sufficiently large that 2nKε > 2π. By the independence of the radial component (eq.
(4)), arcs of circles centered at the origin map to arcs of new circles centered at the origin. By the form
of eq. (8), the choice of K ensures the angular length (in R) of P kn,β(S) is greater than 2π. Then k ≥ K,

along with rk 6= 0,∞, implies the arc is a full circle in the plane: P kn,β(S) = {rk} × S1. �

We use this lemma to prove the next three propositions, which connect the dynamics of the radial map
M to the full planar map P .

Proposition 3. If a subset A ⊂ (0,∞) is (forward) invariant under Mn,β, then {(r, θ) ∈ A × S1} is
(forward) invariant under Pn,β.

Proof. This is automatic since the modulus map Mn,β is independent of θ. �

Recall the definition of f : X → X being it transitive: Given x ∈ X, y ∈ X and ε > 0, there exists
a z ∈ X and N ∈ N such that d(x, z) < ε and d(fN (x), y) < ε. Note that the N can be assumed to be
arbitrarily large; see [Akin, 1993], for example.

Proposition 4. If Mn,β is transitive on a subset A ⊂ (0,∞), then P = Pn,β is transitive on the subset of
the plane: {(r, θ) ∈ A× S1}.

Proof. In this proof, d1 and d2 will be the usual Euclidean metrics in R1 and R2, respectively. Let (r0, θ0)
and (r1, θ1) be arbitrary points in (0,∞)×S1. Let ε > 0 be given. We must find a third point (r′, θ′) that is
near (r0, θ0) and iterates near (r1, θ1). The idea is to use the transitivity of the modulus map to find an r′ is
near r0 for which the modulus of some iterate N of (r′, θ′) is near r1, and use Lemma 1 to find a θ′ near θ0 for
which the angular component of theNth iterate of (r′, θ′) matches θ1 exactly. Details follow. Choose a “polar
coordinate neighborhood” of (r0, θ0) that is contained in an ε ball (in R2) around (r0, θ0), denoted Bε(r0, θ0).
That is, choose εr > 0 and εθ > 0 such that W = (r0−εr, r0+εr)×(θ0−εθ, θ0+εθ) ⊂ Bε(r0, θ0). See Fig. 11.
Note that this requires εr < ε. Now choose K as in Lemma 1 for εθ. Use the transitivity ofM along with an
“epsilon” of εr to find a radius r′ and N satisfying d1(r

′, r0) < εr, and d1(MN (r′), r1) < εr. As mentioned
in the note following the definition of transitive above, we can assume N ≥ K. Lemma 1 now guarantees
that PN ({r′}× (θ0 − εθ, θ0 + εθ)) is a circle. Thus, there exists a θ′ ∈ (θ0 − ε0, θ0 + ε0) such that PN (r′, θ′)
= (MN (r′), θ1). That is, (r′, θ′) ∈ W ⊂ Bε(r0, θ0), and d2(P

N (r′, θ′), (r1, θ1)) = d1(MN (r′), r1) < εr < ε.
�

Proposition 5. IfMn,β has a dense set periodic points in A ⊂ (0,∞), then Pn,β has a dense set of periodic
points in the subset of the plane: {(r, θ) ∈ A× S1}.
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Fig. 11. Figure to accompany the proof of Proposition 4: transitivity in the modulus map implies transitivity in the plane.
a) full phase plane. b) enlargement of one neighborhood. The orbit of (r′, θ′) starts near (r0, θ0) and lands near (r1, θ1). The
unlabelled red point near ((r1, θ1) is PN (r′, θ′); its angle matches θ1 exactly. The labels in the enlargement on the right match
the notation used in the proof of Proposition 4.

Proof. The method of proof is almost identical to the proof of transitivity in the preceding proposition.
Given a point (r0, θ0), we use the denseness of periodic points for M to find a period-q r′ value near r0,
and iterate a small arc with radius r′ a sufficient number of multiples of q to ensure the image is a circle.
This ensures that we can match the angular component after N = kq iterates for some k. Details are left
to the reader. �

Dynamical consequences for Pn,β. The combination of the unimodal map results for M (equiva-

lently M̃), along with the above three propositions, gives the following dynamical description for the family
of nonholomorphic, singular maps of the plane, Pn,β.

Fix an integer n ≥ 1. Consider the β parameter plane for Mn,β for this n. Then the full planar maps
Pn,β have the following behavior. The set with bounded orbits, K(Pn,β) = K(Mn,β)×S, and its boundary
J(Pn,β) = J(Mn,β)× S.

Recall the set of parameters, PSn, for which M̃n,β has a bounded critical orbit.

(1) If β is to the right of PSn, then all orbits escape to infinity. In particular, K(Pn,β) = J(Pn,β) = φ.

Note that an empty bounded orbit set is not possible for complex rational maps of Ĉ.
(2) If β is to the left of PSn (this set is empty for n = 1), then all orbits escape to infinity except for

K(Pn,β) = J(Pn,β), a Cantor set of circles. The dynamics restricted to K(Pn,β) is transitive and has
dense periodic points, and therefore is chaotic. There is no attractor in any topological or measure
sense. (The Cantor set in the line has measure zero [de Melo & van Strein, 1993], so the Cantor set
of circles has zero measure in the plane. All other orbits escape. The (closure of) the basin, therefore,
has zero measure.

(3) If β ∈ PSn, then K(Pn,β) = In,β×S, an annulus in the plane, and J(Pn,β) =
(
{pn,β+ }

⋃
{τ(pn,β+ )}

)
×S,

the union of two circles in the plane. The inner circle {τ(pn,β+ )}×S maps to the outer circle {pn,β+ }×S,
which is fixed. The propositions guarantee that Pn,β restricted to this outer circle is transitive and
has a dense set of periodic points, and is therefore chaotic. The description of the dynamics of Pn,β
restricted to K(Pn,β) breaks up into three cases, corresponding to the three subcases for the unimodal
modulus map when the critical orbit is bounded.

(a) When the attractor A for Mn,β periodic, then A × S is an attractor for Pn,β, and the dynamics
restricted to this finite union of circles is transitive and has dense periodic points, and therefore
chaotic.

(b) When the attractor A forMn,β a Cantor set, then A×S is an attractor for Pn,β, and the dynamics
restricted to this Cantor set of circles is transitive. There are no periodic points.
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Fig. 12. a) Dynamic space for z3 + 0.04/z3. Bounded orbits are in black; the attractor is in red. The initial condition for the
red orbit is indicated by the plus in the first quadrant. b) corresponding graphical iteration for M̃3,0.04.

(c) When the attractor A for Mn,β a finite union of intervals, then A× S is an attractor for Pn,β, and
the dynamics restricted to this finite union of annuli is transitive and has dense periodic points, and
therefore chaotic. This case is illustrated in Fig. 12, where A appears to be a union of two intervals
(indistinguishable numerically from a high period periodic orbit), and A× S appears to be a union
of two annuli.

Remarks:

(1) In order to translate the use of the word “attractor” from the one-dimensional unimodal map setting
to the two-dimensional setting, we define A × S to be an attractor whenever A is an attractor in R.
Thus, our two-dimensional attractors have the property (among others) that the closure of their basins
of attraction contain open sets.

(2) The two-dimensional periodic attractors which correspond to hyperbolic attracting periodic orbits
for the radial map are attractors using even the most stringent definition of attractor: attracting
a neighborhood of the attractor. The same is true for nonhyperbolic periodic orbits at the period-
doubling points, but at the saddle-node points, the attractors are only one-sided attractors.

(3) Since the one-dimensional attractors A all attract sets of full measure in K(M̃n,β) [de Melo & van
Strein, 1993], A × S attracts a set of full measure in K(Pn,β) in cases 3(b) and 3(c) above, as well as
case 3(a).

3.3. Comparison with holomorphic singular perturbations

In this section we compare certain features of the dynamics of zn + β
zn with the corresponding dynamics

of its holomorphic analogue, zn + λ
zn .

• Although the parameter plane (β versus λ) and dynamic plane escape diagrams for the holomorphic pertur-
bations and nonholomorphic perturbations are very different, they do share common features. Specifically,
along their “real spines” in the parameter planes and restricted to real initial conditions, both maps are
the same. This is corroborated in Fig. 13: the restriction of Figs. 13a and 13b to the real axis is the same
(two line segments, symmetric about the origin), as is the restriction of Figs. 13c and 13d (two Cantor sets,
also symmetric about the origin).
• Similarly, the parameter plane figures for both families agree along the positive real axis. See Figs. 14 for
n = 3 and 15 for n = 2, where the real positive β values intersecting the respective parabolic strip matches
the real positive λ values intersecting the respective Mandelbrot set. Note that they do not match on the
respective negative real axes. This is because for real, negative values of λ, the critical points used to create
the λ parameter planes of Figs. 14 and 15 are nonreal. The corresponding maps for β don’t even have a
critical point. Instead, they have an asymptote at x = 0. But the corresponding modulus map has a critical
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a) b)

c) d)

Fig. 13. Dynamic space comparison of nonholomorphic versus holomorphic families for n = 3 and analogous “continuation”
parameters: a) β = 0.125 b) λ = 0.125 c) β = −0.125 d) λ = −0.125. Note that the black in figures a and b match along the
x axis as two symmetric closed intervals. Figures c and d also match as two symmetric Cantor sets.

point where the critical value is zero. So the starting points for the numerical parameter plane experiments
do not match in the β versus λ planes.

a) β plane b) λ plane

Fig. 14. Parameter plane comparison for n = 3. a) z3 +β/z3. b) z3 +λ/z3 The black regions match along the positive x-axis.

• Note that in all subcases of case 3 above, J(Pn,β) is the union of two circles, and the inner circle maps to
the outer circle, on which Pn,β is chaotic. This differs from the situation with rational holomorphic maps,
where the Julia sets are transitive and densely filled with periodic points.
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a) β plane b) λ plane

Fig. 15. Parameter plane comparison for n = 2. a) z2 +β/z2. b) z2 +λ/z2 The black regions match along the positive x-axis.

• The critical set of zn + λ
zn consists of 2n points, all on a circle of radius |λ|1/2n. The critical set of zn + β

zn

is a circle of radius |β|1/2n. What makes both families easier to study is that all critical orbits have similar
behavior.
• The quadratic convergence of SAq2 approaching the origin versus the linear convergence of SAqn for n > 2

is consistent with the different appearances of the Mandelbrot sets for n = 2 versus n > 3. The set for
n = 3 looks like a typical Mandelbrot set, while the set for n = 2 is distorted near the origin. See Figs. 14
and 15 below. This distortion for n = 2 is directly related to the compressed orbit diagram in Fig. 9a since
the orbit diagram is taken along the “spine” of the n = 2 Mandelbrot set in Figs. 15.
• That the “McMullen domains” (the parameter values for which the corresponding filled Julia set is a

Cantor set of circles) exist only for zn + λ/zn if n > 2 [Devaney, 2010] is consistent with the observation
that the parabolic strips PSn lie to the right of the origin for n > 2, but include the origin on its boundary
for n = 2.

4. Generalizations

In the introduction of this paper, we proposed the study of a six-parameter family of rational maps of the
plane: zn + c+ β/zd. We reduced the study to three parameters by setting c = 0 and n = d. We then fixed
n and considered bifurcations in the remaining parameter plane β. The specific famlily on which we chose
to focus was guided by a desire to compare and contrast holomorphic rational map behaviors with the
behavior of more general maps of the real plane. There are many other reductions and/or generalizations
that could have been made. For example, we chose our family from the following larger set of maps:
zn + c + λ

zd1
+ β

zd2
+ αz. A natural approach might be to consider any number of these parameters as

fixed, or auxiliary parameters, and leave two primary parameters to vary. The primary parameter plane
could then be studied as the auxiliary parameters are varied. One major difficulty in such a study is that,
in general, the critical set consists of curves, and different points in the critical set can have different
behaviors.

We close with a numerical experiment which suggests the complications, and beauty, that might exist
in such a study by displaying a parameter space picture for the family z2 + β

z1
. This family has a critical

circle at |z| = |β|1/5. The coloring scheme was determined by the behavior of three different points on this
critical circle, at angles of 0, 2π/3, and 4π/3. The two conjugate parameter values always had the same
escape behavior, but their behavior did not have to match the escape behavior for the point on the positive
β1 axis. The coloring scheme was determined by the sum of the escape iterates for all three points.

We plan to study more of these families in the future, classifying the maps by their critical sets and
dynamical behavior of their images.
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Fig. 16. Beta parameter plane escape experiment for z2 +β/z1. Coloring is determined by the sum of the escape “times” for
three points on the critical circle.
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