Real Analysis, Math 8201

List of Possible Problems for Midterm 2 Test

(Fri. May 1, 2015, 12-2 or by arrangement) April 20, 2015DRAFT

B. Peckham

Be able to state and apply the following definitions:

- 1. Outer and inner Lebesgue measure, including all the definitions of the measures of special rectangles, special polygons, open sets, and compact sets.
- 2. Lebesgue measurable sets in terms of the outer and inner measures of the set. Be sure to include the case when the outer measure is infinite.
- 3. A set that is not Legbesgue-measurable. Be able to write down such a set. (You are not required to prove that it is not measurable.
- 4. Fat Cantor sets
- 5. The Cantor-Lebesgue function.
- 6. An algebra and a σ -algebra.
- 7. The Borel σ -algebra. Know how to describe a set that is Lebesgue measurable, but not Borel measurable.
- 8. A null set.
- 9. A Lebesgue-measurable function five equivalent definitions.
- 10. A simple function.
- 11. Class S of simple functions.
- 12. $\int s d\lambda$ for $s \in S$.
- 13. $\int f d\lambda$ for f measureable, nonnegative.
- 14. L^1 , L^1 norm, convergence in L^1
- 15. f_-, f_+ .
- 16. a.e.
- 17. Integrals over subsets of \Re^n .
- 18. Measure space (X, M, μ)
- 19. Step function on I
- 20. Riemann integral on I.
- 21. Lower and upper semicontinuous
- 22. f, \overline{f} .
- 23. f_y , A_y

Be able to state the following results. Proofs of those with a 'p' should also be known. The lists of 'properties' below need not be memorized per se, but would be more likely to appear as true-false questions. Properties to be proved will be explicitly stated.

- 1. Properties $O1^p, O2^p, O3^p, O4^p, O5, O6$
- 2. Properties $C1^p, C2^p, C3^p, C4$
- 3. Properties $*1^p, *2^p, *3^p, *4^p, *5$
- 4. Theorem on Approximation (for sets in L_0 p. 45) and its Corollary (p. 46)
- 5. Theorem on Countable Additivity (for sets in L_0 p. 47)
- 6. Properties $M1 M4, M5^p, M6 M10$
- 7. $\lambda^*(TA) = |\det(T)|\lambda^*(A)$, $\lambda^*(z+A) = \lambda^*(A)$, $\lambda^*(tA) = t^n\lambda^*(A)$, and the analogues for inner measure and measure.
- 8. LICT
- 9. Fatou's Lemma p (assuming LICT)
- 10. LDCT
- 11. The two approximation theorems of functions in L^1 by functions in C_c and C_c^{∞} .
- 12. The two Fubini theorems

Simple proofs that were part of previously done homework problems, or a step in such a proof, or a similar step or proof might also be asked. In particular,

- Ch 1: 2g,10,18abc,19,43,44 (not originally assigned)
- Ch 2: 3 (OK to assume the only open and closed sets of \Re^n are the empty set and \Re^n), 12, 31
- Ch 5: 2,6, 16ab, 21
- Ch 6: 1,5,9
- Ch 7: 1,2,22
- Ch 8: -

Examples:

- 1. A function that is Lebesgue integrable, but not Riemann integrable
- 2. A sequence of integrable functions $\{f_k\}$ with the property that $\int \lim f_k d\lambda \neq \lim \int f_k d\lambda$.
- 3. An example of a sequence of functions $\{f_k\}$ and a function f for which f_k converges to f in L^1 , but does not converge pointwise.
- 4. A set A measurable in \Re^n but A_y is not measurable in \Re^m (n = l + m) for at least one y.