Math 3280: DE+LA. Test 2 partial answers. Prof. Bruce Peckham

1. (a) $y(x)=c_{1} e^{x}+c_{2} e^{-4 x}$
(b) $y(x)=c_{1} e^{2 x}+c_{2} x e^{2 x}$
2. $y(x)=\frac{7}{4} e^{2 x}+\frac{5}{4} e^{-2 x}-2$
3. (a) 63
(b) 43
4. 32
5. $\left(\begin{array}{ccc}1 & 3 & 8 \\ 2 & -1 & 1 \\ 3 & 0 & -2\end{array}\right)\left(\begin{array}{l}c_{1} \\ c_{2} \\ c_{3}\end{array}\right)=\left(\begin{array}{c}-5 \\ 2 \\ 1\end{array}\right)$
6. $\left(x_{1}, x_{2}\right)=(-9,11)$
7. $\left\{t\left(\begin{array}{c}5 \\ -2 \\ 1 \\ 1\end{array}\right)\right\}(t$ is any real number $\left.)\right)$
8. Basis: $\left\{\binom{1}{2},\binom{2}{5}\right\}$ (or any two of the three given vectors, or any two independent vectors in \Re^{2}, since the span of the three given vectors is all of \Re^{2}.
9. (a) $A^{-1}=\left(\begin{array}{lll}1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & \frac{1}{3}\end{array}\right)$
(b) Leave row 1 unchanged; replace row 2 with itself - 2 times row 1 ; multiply row three by 3;
10. (a) False. The zero vector is not a solution. (b) False. Need three vectors in a basis for \Re^{3}.
11. Solve the system $c_{1}\binom{1}{2}+c_{2}\binom{1}{3}=\binom{0}{0}$ for c_{1} and c_{2} using, for example, row reduction. It should have the unique solution $c_{1}=0, c_{2}=0$. This means the two vectors are linearly independent.
12. There are several methods, but the easiest is to compute the Wronskian determinant of $\left\{e^{x}, e^{2 x}, e^{3 x}\right\}$. It should be $2 e^{6 x}$. Since this is not identically zero (it is never zero), the three functions are linearly independent.
13. Solve the system $c_{1}\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)+c_{2}\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right)=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$ for c_{1} and c_{2} using, for example, row reduction. It should turn out that there is no solution. Therefore, $\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$ is not in the span of the other two vectors.
14. You must show T is closed under vector addition and scalar multiplication:
(a) Let $\binom{a}{b}$ and $\binom{c}{d} \in T$. This means $a+2 b=0$ and $c+2 d=0$. Then $\binom{a}{b}+\binom{c}{d}=$ $\binom{a+c}{b+d}$. Since $(a+c)+2(b+d)=(a+2 b)+(c+2 d)=0+0=0$, then $\binom{a}{b}+\binom{c}{d} \in T$. So T is closed under vector addition.
(b) Let $\binom{a}{b} \in T$. This means $a+2 b=0$. Let $c \in \Re$. Then $c\binom{a}{b}=\binom{c a}{c b}$. Since $(c a)+2(c b)=c(a+2 b)=c 0=0$, then $c\binom{a}{b} \in T$. So T is closed under scalar multiplication.
