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Premise of the study: Archaeological and genetic analyses of seed-propagated annual crops have greatly advanced our under-
standing of plant domestication and evolution. Comparatively little is known about perennial plant domestication, a relevant
topic for understanding how genes and genomes evolve in long-lived species, and how perennials respond to selection pres-
sures operating on a relatively short time scale. Here, we focus on long-lived perennial crops (mainly trees and other woody
plants) grown for their fruits.

Key results: We reviewed (1) the basic biology of long-lived perennials, setting the stage for perennial domestication by con-
sidering how these species evolve in nature; (2) the suite of morphological features associated with perennial fruit crops under-
going domestication; (3) the origins and evolution of domesticated perennials grown for their fruits; and (4) the genetic basis
of domestication in perennial fruit crops.

Conclusions: Long-lived perennials have lengthy juvenile phases, extensive outcrossing, widespread hybridization, and limited
population structure. Under domestication, these features, combined with clonal propagation, multiple origins, and ongoing
crop—wild gene flow, contribute to mild domestication bottlenecks in perennial fruit crops. Morphological changes under do-
mestication have many parallels to annual crops, but with key differences for mating system evolution and mode of reproduc-
tion. Quantitative trait loci associated with domestication traits in perennials are mainly of minor effect and may not be stable
across years. Future studies that take advantage of genomic approaches and consider demographic history will elucidate the
genetics of agriculturally and ecologically important traits in perennial fruit crops and their wild relatives.
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For over 150 years, evolutionary biologists have used do-
mestication as a way to study selection under controlled condi-
tions (Darwin, 1859, 1899; de Candolle, 1886); accordingly,
domesticated systems have occupied a critical role in the devel-
opment and testing of evolutionary theory (Ross-Ibarra et al.,
2007; Pickersgill, 2009; Purugganan and Fuller, 2009). Recent
archaeological, genetic, and genomic analyses of annual crops,
such as maize (Zea mays L.), rice (Oryza sativa L.), sunflower
(Helianthus annuus L.), tomato (Solanum lycopersicum L.),
and wheat (Triticum L. spp.), have greatly advanced our under-
standing of plant domestication (Doebley et al., 2006; Zeder
et al., 2006; Bai and Lindhout, 2007; Burke et al., 2007; Burger
et al., 2008; Glémin and Bataillon, 2009). However, compara-
tively little is known about the way in which perennial plants
respond to artificial selection (Zohary and Spiegel-Roy, 1975;
Zohary, 2004; Clement et al., 2010; McKey et al., 2010), a rel-
evant topic for understanding how genes and genomes evolve
in long-lived species, and how perennial populations respond to
other selection pressures operating on a relatively short time
scale, such as contemporary climate change (Hamrick, 2004;
Reusch and Wood, 2007).

Plant domestication is an evolutionary process operating un-
der the influence of human activities (Harlan, 1992). Over time,
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artificial selection causes cultivated populations to diverge
morphologically and genetically from their wild progenitors
(Clement, 1999; Emshwiller, 2006; Pickersgill, 2007). The do-
mestication process produces a continuum of plant populations,
ranging from exploited wild plants to incipient domesticates to
cultivated populations that cannot survive without human inter-
vention (Clement, 1999; Pickersgill, 2007; Clement et al.,
2010). Here, we consider cultivated plant species that are evolv-
ing in response to artificial selection pressures to be undergoing
domestication. This inclusive approach requires that cultivated
populations exhibiting any morphological or genetic divergence
from their wild ancestors be treated as part of the domestication
continuum.

Perennial species include herbaceous plants as well as woody
shrubs and trees that live for more than 2 years. They are gener-
ally divided into two groups: short-lived perennials, which live
for 3-5 years, and long-lived perennials, which live for more
than 5 years. In addition to living longer than annual plants, the
reproductive biology of perennials differs from that of annuals
in that many perennials have long juvenile phases, are obligate
outcrossers, experience high rates of intra- and interspecific
gene flow, and frequently reproduce both sexually and asexu-
ally (Petit and Hampe, 2006; Savolainen et al., 2007; Smith and
Donoghue, 2008; Vallejo-Marin et al., 2010). Under domesti-
cation, perennial plants are often propagated clonally, which, in
addition to long juvenile phases, further decreases the number
of sexual cycles separating domesticated individuals from their
wild progenitors (Zohary and Spiegel-Roy, 1975; McKey et al.,
2010, in press). On the basis of life history characteristics and
mode of reproduction, slow rates of evolution in perennial crops
might be expected (Zeder et al., 2006; Olsen and Schaal, 2007;
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Pickersgill, 2007); however, numerous perennial crops exhibit
substantial morphological and genetic divergence from their
wild progenitors.

Domesticated perennials are an important component of ag-
ricultural economies around the globe (Schreckenberg et al.,
2006). Perennial crops produce an abundance of useful prod-
ucts including fleshy roots and other belowground materials
(e.g., cassava, Manihot esculenta Crantz; horseradish, Armora-
cia rusticana G. Gaertn., B. Mey. & Scherb.; potato, Solanum
tuberosum L.; oca, Oxalis tuberosa Molina), woody stems [e.g.,
Populus L. spp.; Douglas fir Pseudotsuga menziesii (Mirb.)
Franco], fleshy fruits [e.g., apples, Malus X domestica Borkh.;
avocados, Persea americana Mill.; sweet cherries, Prunus avium
L.; oranges, Citrus sinensis (L.) Osbeck], and dry fruits [e.g.,
almonds, Prunus dulcis (Mill.) D. A. Webb; pecans, Carya il-
linoinensis (Wangenh.) K. Koch; walnuts, Juglans regia L.],
and interest in perennial grains is on the rise (Glover et al.,
2010). How perennial species respond to artificial selection de-
pends in part on the lifespan of the individual (short-lived or
long-lived perennial) and whether the target of selection is a
vegetative part of the plant (root, underground stem, above-
ground stem, leaf base, fleshy leaf) or reproductive component
(fruit, seed).

The majority of domesticated perennials are long-lived, woody
species cultivated for their edible fruits (Van Tassel et al.,
2010). Botanically, a fruit is a mature ovary; here, the term
“fruit crops” refers to cultivated plant species in which some
component of the fruit is used by humans (e.g., mature ovary,
seed, additional flower parts attached to the mature ovary).
Long-lived, perennial fruit crops were domesticated in all
major agricultural centers including eastern Asia (Citrus L.),
Mesoamerica [avocado; papaya, Carica papaya L.; white sapote,
Casimiroa edulis La Llave], the Near East (date palm, Phoenix
dactylifera L.; fig, Ficus carica L.; grape, Vitus vinifera L.;
olive, Olea europaea L. subsp. europaea; pistachio, Pistacia
vera L.; pomegranate, Punica granatum L.), South America
(Annona L. spp.; cashew, Anacardium occidentale L.; guava,
Psidium guajava L.), and western Asia [almond; apple; peach,
Prunus persica (L.) Batsch; pear, Pyrus communis L.]. Some
fruit crops were domesticated from perennial wild progenitors
but are grown primarily as annuals (e.g., chile, Capsicum L.
spp.; eggplant, Solanum melongena L.; and tomato (Janick and
Paull, 2008). Because these crops are functionally annuals and
share several similarities with domesticated annuals, they will
not be treated as perennial fruit crops here.

This review focuses on long-lived perennials, primarily trees
and a few woody vines and shrubs, that are cultivated for their
edible reproductive structures. Historically, perennial plants were
considered intractable systems for studying evolution due to
long generation times and low rates of selfing. However, emerg-
ing technologies (e.g., transcriptome sequencing) and analyt-
ical techniques (e.g., association mapping), in conjunction with
mature breeding collections housed in common gardens, are
now facilitating detailed evolutionary analyses in perennial
species. These advances, along with a steadily increasing body
of literature dealing with previously ignored domesticated spe-
cies mean that perennial fruit crops present excellent study sys-
tems to investigate the tempo and mode of evolutionary
processes in species that live for multiple years. Do perennial
fruit crops evolve under artificial selection just like annuals,
only more slowly? What are the hallmarks of domestication in
perennial plants? In this review, we (1) revisit the basic biology
of natural tree populations and set the stage for perennial do-
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mestication by considering what is known about how trees
evolve under natural selection pressures, (2) define the suite of
morphological features commonly associated with the evolu-
tion of perennial fruit crops under domestication, (3) summa-
rize present understanding of the origins and evolution of
domesticated perennials grown for their fruits, and (4) describe
the genetic basis of domestication in perennial fruit crops.

EVOLUTIONARY PROCESSES IN NATURAL
TREE POPULATIONS

Although many important advances in evolutionary biology
were made first in crops and later tested in wild populations, it
appears that the opposite may be true for long-lived perennials,
where recent progress has occurred primarily in natural (undo-
mesticated) tree populations. At neutral or nearly neutral genetic
loci (see Van Oosterhout et al., 2004), natural populations of
long-lived species exhibit high levels of within population vari-
ation and weak population structure (Loveless and Hamrick,
1984; Hamrick et al., 1992; Duminil et al., 2007, 2009). Despite
this, these populations appear locally adapted, with multiple
loci of small effect underlying adaptive traits (Petit and Hampe,
2006). Below, we provide a brief summary of recent evolutionary
analyses of natural tree populations and discuss their relevance
for understanding human-mediated evolutionary processes in
long-lived species.

On the basis of neutral marker data for natural populations,
limited population structure is correlated with lifespan: annu-
als are more structured than short-lived perennials, which are
more structured than long-lived perennials. Other factors cor-
related with population structure include breeding system, floral
morphology, mode of reproduction, mechanisms of pollination
and seed dispersal, successional stage, and geographic range,
among others (Loveless and Hamrick, 1984; Hamrick and Godt,
1990). Differences in lifespan may account for variable degrees
of population structure exhibited by annual and perennial spe-
cies, and mutation rates likely play a role as well. Although
long-lived perennial plants accumulate more somatic mutations
than annuals (Klekowski, 1997), annual plants exhibit 2.7-10
times the mutation rates observed in perennials (Savolainen and
Pyhéjarvi, 2007; Smith and Donoghue, 2008). Another impor-
tant aspect of long-lived perennials is the extended juvenile
phase; this prolonged nonreproductive period may dilute or
minimize the impact of founder effects because until trees reach
maturity, newly established populations will grow only through
the arrival of new migrants (Austerlitz et al., 2000).

It is possible that patterns of limited population structure in
perennials might not reflect lifespan alone, but also variables
that are strongly correlated with perenniality, primarily mating
system (e.g., outcrossing) and sexual type (e.g., unisexual flow-
ers, monoecious, gynodioecious, dioecious taxa; Duminil et al.,
2007, 2009). In perennial species, benefits of reproductive as-
surance gained through selfing appear to be outweighed by the
cumulative, deleterious effects of inbreeding that may accrue
over the life of the organism (Barrett, 1998; Petit and Hampe,
2006). Accordingly, long-lived species are generally outcrossers, a
system maintained through the physical and temporal separation
of the sexes via (hetero)dichogamy, dioecy, or self-incompatibility
(Barrett, 1998; Renner, 2001; Vamosi et al., 2003; Ward et al.,
2005; Petit and Hampe, 2006; Scofield and Schultz, 2006).
Although many annual crops were domesticated from self-com-
patible wild ancestors, including barley (Hordeum vulgare L.),
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chickpea (Cicer arietinum L.), eggplant, lentils (Lens culinaris
Medik.), maize, pea (Pisum sativum L.), chile (Capsium an-
nuum L.), tomatoes, and wheat (Zohary and Hopf, 2000; Bai
and Lindhout, 2007; Janick and Paull, 2008), it appears relatively
few perennial crops were derived from selfing wild populations
(see A domestication syndrome for perennial fruit crops later).

The same mechanisms that allow perennial plants to avoid
selfing also facilitate extensive intra- and interspecific gene
flow in trees across short and long distances, and one conse-
quence of this is that interspecific hybridization is fairly com-
mon in trees (e.g., Hamrick et al., 1992; Ellstrand et al., 1996,
Petit et al., 2003, Latouche-Hallé et al., 2004, Dutech et al.,
2005, Ward et al., 2005, Gerard et al., 2006, Hardy et al., 2006;
Curtu et al., 2007, Dick et al., 2007; Ahmed et al., 2009; Du
et al., 2009; LePais et al., 2009; Ashley, 2010). Interspecific
hybridization in natural tree populations has implications for
species coherence and adaptive evolution in the wild and can
also play a role in the process of plant domestication. The im-
portance of hybridization in domesticated species was noted by
Stebbins (1950, p. 292), particularly in clonally propagated do-
mesticates, where “any single valuable hybrid individual, once
obtained, can immediately become the progenitor of a new va-
riety and can be perpetuated indefinitely.” Indeed, it appears
hybridization has been a potent force in the evolution of domes-
ticated perennials (see Hybridization in domesticated perennial
fruit crop lineages later).

Despite low levels of among-population structure based on
neutral markers, common garden analyses of populations origi-
nating from geographically distinct areas indicate that natural
tree populations are locally adapted (Howe et al., 2003; re-
viewed in Gonzalez-Martinez et al., 2006b; Neale, 2007; Neale
and Ingvarsson, 2008; Neale and Kremer, 2011). Current un-
derstanding of the genetic basis of adaptation in long-lived
populations is based largely on temperate forest trees that have
been evolving in response to selection pressures such as dis-
ease, drought, and cold; examples include Picea A. Dietr.
(Namroud et al., 2008), Pinus L. (Savolainen et al., 2004;
Gonzalez-Martinez et al., 2006a; Notivol et al., 2007; Palmé
et al., 2008; Wachowiak et al., 2009), Populus L. (Chen et al.,
2002; Jansson and Douglas, 2007; Rae et al., 2007), and
Pseudotsuga Carriere (Palmé et al., 2008; Eckert et al., 2009a,
b). Quantitative trait locus (QTL) analyses and association stud-
ies have demonstrated that these traits are generally associated
with variation at multiple loci of small effect (Jermstad et al.,
2001a, b, 2003; Howe et al., 2003; Wheeler et al., 2005;
Gonzalez-Martinez et al., 2006a; Heuertz et al., 2006; Rae
et al., 2007; Neale, 2007; Eckert et al., 2009a, b, 2010). In con-
trast, recent studies characterizing the genetic basis of domesti-
cation traits (traits that evolved under cultivation in response to
artificial selection) in annual crops demonstrate that many do-
mestication traits are the result few loci of large effects (Gepts,
2004; Purugganan and Fuller, 2009). Similar studies in long-
lived crops indicate that some traits parallel natural tree popula-
tions in genetic architecture, while others more closely resemble
the genetic architecture detected in annual crops (see Genetic
basis of perennial fruit crop domestication later).

A DOMESTICATION SYNDROME FOR
LONG-LIVED, PERENNIAL FRUIT CROPS

The evolution of plant morphology in response to human se-
lection pressure is the foundation upon which agriculture is
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built. Plant domestication has resulted in a suite of morphologi-
cal changes in cultivated populations relative to their wild pro-
genitors called a “domestication syndrome” (Harlan et al.,
1973; Harlan, 1992; Zohary and Hopf, 2000; Careau et al.,
2010). A large body of work quantifying morphological differ-
ences between cultivated annuals and their wild progenitors has
accumulated. Recent studies have described aspects of the do-
mestication history of individual perennial crops, and a few
studies have considered general patterns associated with evolu-
tionary processes in these long-lived crop species (Zohary and
Spiegel-Roy, 1975; Zohary 2004; McKey et al., 2010, in press).
Using analyses of annual crops as a basis of comparison, we
describe the evolution of reproductive and vegetative traits in
perennial fruit crops under domestication (Table 1).

Evolution of reproductive traits—Two of the primary differ-
ences between annual and perennial crops are breeding system
and mode of reproduction (Zohary and Spiegel-Roy, 1975;
Zohary 2004; McKey et al., 2010). In terms of breeding system,
natural populations of annual and perennial crop relatives differ
with regards to self-compatibility and dioecy. As noted already,
many cereals and pulses were domesticated from self-compatible,
wild progenitors, but self-compatible, wild ancestors of perennial
crops are less common (Zohary and Hopf, 2000). Dioecy, how-
ever, is weakly correlated with woody growth and fleshy fruit pro-
duction (Muenchow, 1987; Renner and Ricklefs, 1995; Vamosi
et al., 2003); consequently, several dioecious perennials have
been domesticated while few (if any) dioecious annuals have
been selectively cultivated for food. Under domestication, the
breeding systems of dioecious perennials have evolved to gyno-
dioecy, andromonoecy, or hermaphroditism (e.g., papaya, grape,
carob [Ceratonia siliqua L.]). On the other hand, annual and pe-
rennial crops are similar in that many were domesticated from
allogamous wild populations, which, under domestication, have
switched to an autogamous breeding system; for example, the
annual crops rice and faba bean (Vicia faba L.), and the perennial
crops almond, grape, and plum (Prunus domestica L.; Table 1).

The vast majority of annual crops are grown from seed. In
contrast, more than 75% of perennial fruit crops are clonally
propagated (Table 2). This is not necessarily the case for peren-
nial species that are grown as annuals; those grown for their
belowground vegetative components are generally clonally
propagated (e.g., horseradish, oca, potato), and those grown for
their fruits (e.g., tomato, chile, eggplant) are grown from seed.
Long juvenile phases in perennial species place severe limits on
traditional breeding efforts because farmers are required to wait
multiple years (in some cases, decades) before fruits can be
evaluated, selected, and cultivated. Early farmers sidestepped
challenges associated with juvenile phase length by adopting
clonal propagation, the primary form of reproduction in peren-
nial fruit crops and a key component of the domestication syn-
drome in long-lived plants (Zohary and Spiegel-Roy, 1975).
The shift from sexual to clonal reproduction allowed for the
faithful reproduction of individuals with superior features by
eliminating uncertainty associated with sexual reproduction
(Bhojwani and Razdan, 1996). Clonal reproduction can result
in rapid rates of change in domesticated systems because indi-
viduals with favored traits, once identified, can be reproduced
exactly and extensively. The shift from sexual to clonal repro-
duction has also led to concomitant changes in reproductive
biology (discussed below), some of which are the most striking
changes associated with perennial fruit crop domestication
(Zohary and Spiegel-Roy, 1975; McKey et al., 2010; Table 1).
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When one or just a few clones (cultivars) are planted across
a geographic region, clonal propagation can result in mate limi-
tation (McKey et al., 2010). In nature, tree populations are
almost exclusively outcrossers (see previous section); mate
limitation resulting from clonal propagation in agricultural en-
vironments has resulted in the evolution of alternative strate-
gies to ensure fruit production. For example, clonally propagated
perennials undergoing domestication have shifted from unisex-
ual flowers to bisexual flowers (e.g., carob, grape) and from
dioecy to monoecy (e.g., black pepper [Piper nigrum L.]).
Papaya includes dioecious, gynodioecious, and andromonoecious
cultivars, but it is unclear if variation in reproductive biology
evolved as a result of human selection or if it was present in the
wild ancestors (Storey, 1976a; Niklas and Marler, 2007). Some
cultivated perennials have evolved from producing fruit through
sexual reproduction in the wild to parthenocarpic fruit produc-
tion in cultivation (e.g., banana [Musa L. spp.], fig, jocote
[Spondias purpurea L.], pear, pistachio). Other perennial spe-
cies have evolved self-compatibility under domestication (e.g.,
almond, grape, plum; Table 2). Domesticated perennials and
their wild relatives provide outstanding model systems for un-
derstanding the evolution of plant mating systems when clonal
reproduction is common (Vallejo-Marin et al., 2010), although
to date few comparative analyses have been conducted (Otero-
Arnaiz et al., 2003).

In addition to changes in breeding system and mode of repro-
duction, the domestication of perennials has resulted in changes
in inflorescence, seed, and fruit characteristics (Table 1). In
many ways, evolutionary changes in domesticated perennials
mirror features that have evolved during the domestication of
annual crops (Harlan et al., 1973; Zeven and deWet, 1982;
Hammer, 1984; Harlan, 1992; Hancock, 2004; Glémin and
Bataillon, 2009; Purugganan and Fuller, 2009). For example,
relative to their wild progenitors, both annuals and perennials
have less toxic seeds with higher oil content and lower rates of
dormancy. In addition, domesticated annuals and perennials ex-
hibit larger fruits that are more variable in color, taste, and other
traits related to human preferences (Table 1).

Despite these similarities, some morphological features tra-
ditionally associated with the domestication syndrome of an-
nual plants either do not occur in perennials or have not (to our
knowledge) been recorded for perennials (Table 1). For exam-
ple, the number of inflorescences in annual crops is greater in
cultivated populations than in wild, and under domestication,
sterile flowers found in wild populations have become fertile.
Further, the inflorescences of many domesticated annuals re-
main intact, while those of their wild ancestors shatter when
ripe. Although plausible, it is unclear whether similar changes
have occurred in domesticated perennials. Conversely, some
perennial crops have reproductive features that are not found in
annual crops; notably, domesticated perennials have higher oil
content in nonseed parts of the fruit and thinner shells than do
their wild progenitors.

Examples in perennials
Olive, plum (Zohary and Hopf 2000);

kapok (Dick et al., 2007)
(Zerega et al., 2004); sour cherry (Tavaud

2008); papaya (Niklas and Marler, 2007);
et al., 2004)

apple, cherry, peach, pear, plum, citrus

(Singh, 1976); coconut (Janick and Paull,
(Tukey 1964)

Avocado (Lahav and Lavi, 2002); castor
Kiwi (Atkinson et al., 1997); breadfruit

Examples in annuals

Eggplant (Weese and Bohs, 2010)
Cereals, sunflowers (Zohary and Hopf,

2000); soybean (Tian et al., 2010)
Wheat (Zohary and Hopf, 2000);

Tomato, chile peppers, eggplant
peanut (Kochert et al., 1996)

(Janick and Paull, 2008)

Domesticated (derived) state

No spines

Grown as annuals
Determinate growth
Dwarf

Polyploid

Wild (ancestral) state

Indeterminate growth

Spines
Perennial
Large
Diploid

Trait

Evolution of vegetative traits—Although the primary focus of
selection in fruit crops has been reproductive structures, changes
in vegetative traits have occurred during the domestication pro-
cess as well (Table 1). Like some annual crops, domesticated
perennials exhibit a reduction in their defensive structures rela-
tive to their wild progenitors. A common vegetative feature of
domesticated perennials is dwarfism, which has been documented
in avocado (Persea americana Mill.), castor (Ricinus communis
L.), coconut (Cocos nucifera L.), and numerous Rosaceae crops;

Defensive structures #
Growth form
Ploidy level

Continued.
b Described by Zohary and Spiegel-Roy (1975) and Zohary (2004).

2 Described by Hancock (2004)
¢ Described by Harlan (1992)

TABLE 1.
Category
Vegetative



AMERICAN JOURNAL OF BOTANY [Vol. 98

1394

800C ‘Ined pue

(s3urpaas
PIO I18aA-321y) 0JUO

('sad o[qnedwoo-jros
Qwos) d[quedwodut-J[as
‘fenxastun A[euonouny

(orooRINy)

Yore( 900¢ ‘OI&T 3unjeis :;Jeuolo) {paog SQWIAWOS ‘[enXasig 1A A BOLIOWEOSIIA odeg ANMYA\  IAR[T B S171p2 DOAIUISD))
uopnoT ("XYoI )
psoNIID] *)
pue ‘yqooy|
3 (yuasuep)
1102 (pesso1ono orquedwoour-jjos Aqrerouad SNUL0f1p10 ") “NN (eeooepuER[SNn[)
“Te 30 NeID {100T :pads) ‘s3umnd {Snowre3oYIpoINAY ("XY21\ ) pouypnby gooy] 'Y (‘'quaSuepy)
‘QU0)G pUB SOUBJN| 7€ = X7 = U ‘Sunyeis :euor) ‘SNOTOIOUOTA! D P SZIPHIqAH ordnmy BOLIOWY YIION uedoq sisuauroul]]r v
8007 “Te 10 SIOMOJ [eNXISIq
SutA <8007 ‘Tmed (sSumno 1M SNOTOQ0UOW IO
pue yoruef <9007 P1001 :[RUO[D) ¢{(Adxeoouayyred) snorosorp SPUBR[MO[ UBILIDW Y (oe20ROLIR))
QAT ‘e9LE] A10)S Q] = X7 =ug £PIsSOIOINO :PARS {(orqnedwoo-19s) renxasig i A [enua)) uIIsey ekedeq 1 vdvdpd o1V
800C ‘[Ined pue (Pass0IINO ‘pAs) rlOqQUIBIRD) (qeaeoepIexQ)
Joruef (9007 QIAT 10 gz = ug ‘3unyes ;qeuor) SNOJA)S0I10)aY ‘[enxasrg I A BISY JSEOUINOS 9ImIpIeIS 1 D]OQUIDIDI DOYLIIAY
(*sad 9[quedwos
-J19s) 9[quedwoour
800¢ ‘[Ined pue (pa9s) ‘Sunyesd -J19s ‘snoukSojoxd (eroorUOUUY)
Joruef <9007 QAT ¢ ‘urppnq :[euo[) K[3uons ‘s1omop [enxasrg 1A ¢ LOLIOWY [LION medmed reund (1) pqojLL purISy
RISQUOIDIA UI (9e0RIOIN)
UuoNEIIUNWWOD (SurroAef 1re SISUDUUDLIDIL “ [JTM [NOQIY, SISUGUUDLIDUL
[euosiad ‘e3a107 "N 1o ‘s3umno pajyess pazIpugAy ‘ooue[g 'V X S1jup "y pue
900C ‘00T 9S=xZz=ug 10 PaJO0I :[RUO[D) ('sAd 1SUDWDD "}/ WOIJ RISQUOIDIA (812qgso (uosunyivg)
“le 10 830107 ‘pQ~ =X¢ =ug {passorono :paeg  drdieoouayired) SNOIOQOUOTN  PAIBONSAWOP YUY 'y 7 ISBI[ IV ‘BISQUA[OJ /RISQUB[IA! ynaypearqg  syup °y) dds sndivoorry
UoNEIIUNWWOD (sSumno payyeis 1o TIOIN 282Ul Y
[euosiad ‘e3a107 "N P1001 :[RUO[D) )M PISSOId (9B20RIOIN) "We|
9007 QIAT 95 =xg=ug £PIsSOINNO :pIg SNOIJAOUOIA Ud9q ABY "SAD { ®BIPUJ ‘SIBYD) UIAISIM ymaper  snjkydoaasay sndivoogiy
(9eooRUOULY)
(poos) ‘Sunjeid Q[N PJOWLIYD Y
900T “OI&T i ‘s3umno :euor) 9rqnedwoo-Jos ‘enxasrg ursuo puqAH i BOLIDWY YINOS eAowa)y X ] psowvnbs puouuy
800¢C
‘[Ined pue yoruef (noyy1p o[queduwoout-jjos
9002 14T 4007 uonegdedoid [euoro) A[TeIoua3 ‘snowre3oydrp ] psowvnbs (1openog BAOWILIAYD (oradRUOUUY)
‘[enosed pue 1309J104 A £PasSOINNO :pIg SIOMOY ‘SIOMO[J [enXasIg I SoZIpLqAH { ‘MI9J) eoLoWY YINos ‘ordde preisn) IS PJOWILIdYD DUOUUY]
UoNEeIIUNWWOD
Teuosxad ‘[[oyaIA ‘[
PU® [19d 'S *800C
‘Ined pue yoruef w oy (pa9s) Sumnd (ordoeIpIRORUY)
‘1861 ‘TIPYMNAN ‘0€ ‘yg=ug ‘unyeid :euo[) SNOIOAOUOWOIPUY { ¢ [1zelg [enua) MIYSB)) T 2]DIUIPIIIO WNIPADIDUY
(eedoRIpIUNOY)
(paas) (X SISUUIYD Y uosn3Iog Y 'V %
900T QAT ¢Sunyeis ‘s3umnd ‘youe|d s1suauyd Yy Suery - D (‘Aoy)
L661 “TB 12 uosurpy Y91 =u9 Pal0O0I -TeUOD snoaolq  ‘urduio projd&jodorry I BUID NIIMIS] V) DSO1NIP DIPIULOY
SOUQIJY 'sdod (K1epU0o3s) (‘sdod oAneu woiy JueIolIp SoAne[aI suIsLo (surSuo jo ‘ou) JwieU UOWWO)) (ATure,y) soroadg
pareanno  Arewnd :uonededorg  J1 “sdod pajeanino ur waysAs  yim mop aua3 3urouo Jo "oN uIs1Io Jo uoIgoy
Jo Aprojd Surpealq) waysAs Surpearg ‘ursuo ‘uonezipqAyq

. SAD,, SB PaJRIAQIqQE AIe SIBAN[NO ‘AI0Y “A[reoneqeydye pais
are uonesedoid jo spoyjewr oy ‘sejeurwopaid auou jnq uonededoid jo spoyow o[dn[NW I8 1Y) AIAYM SISBD U] "sesayjuared Ul MO[[0J SPOYIAW UOWWOD SSI[ 31y pajs st uonesedoid jo
poyjaw pasn AJUOWWOD JSOU A, "UONRZI[1I)-J[3S 10 UONLZI[IIA)-SSOIO WOl J[Nsal ued uononpoid paag "Auokiquia refjaonu 1o ‘Sunjeis ‘sSumnod ‘Jurioke] Ire sopnjour uononpoidar [euord
JO SPOYIRIA “paisi] axe spoyjeuwr uonesedoid poss pue [euold yroq ‘poyrowr uonededord 10, ‘sar0ads yora Jo woIsAs JUIpaalq [eInjeu ay) SUIMO[[0J sesaypuared ur paysi| a1e asoy) ‘suonendod
PABAD[ND Ul PAYNUIPI U IABY WI)SAS FUIPIAIQ UI SUONBLIBA JI SPISI[ SI 2INJBU UI Punoy (s)walsAs Suipaaiq oy ‘swd)sks Jurpaarq 10 '[9 Aprojd pue ‘(paes ‘feuo[d) uonededoid jo
(s)poyewr ‘(umouy aroym) suonendod pareanno pue prm ur swlsks Surpaaiq ‘A103s1y uonezIpliqAy ‘(s)urSuo jo suorder aaneind 1oy ‘sdoio jmiy Jeruuored pojeorISOWIOp OWIOS 7 IV



1395

MILLER AND GROSS—PERENNIAL FRUIT CROP DOMESTICATION

September 2011]

800€ ‘TIned
PUE YIIUB[ :900T
QAT $100T Q100N

800€ ‘IIned

(AuoA1quia refeonu
‘poreurjod-ssoro
:pa9s) ‘Sunyrom-doy
‘Funyerd ‘Surroke|
‘Surppng :[euor)
(AuoK1quuia reffeonu
‘pareurjod-sso1o
:pa9s) ‘Suryrom-doy

sauod ordresouayyred
£squo[d ooiquakjod

pue druoAIquiaouour
{(orqnedwoo-19s) [enxasig

SISUULS *)
] wnpupanD “)
Jo juared

{ATIpear sazIpLqAHq

S1pUnAS ") X Y99qsQ

BISY

o3ueIo ULRpURT

(or0RINY)
ooue[g PIDINONAL SN

pue yoruer ‘900g ‘Sunyeis ‘Surroke| (") s1suau1s D) SOIPUT ISOM (eroorINy)
QIAT {1007 “QI00IN A ‘Surppnq :[euor) 9rqnedwod-Jos ‘renxasrg :uI3uo pugAHq 10 BISY JSEAYINOS ynyyadeln  peJoRIN 1s1pnand SHAJL)
(AuoA1quia refeonu
‘poreurjod-ssoro N29qsQ (1) uoutry -
800C ‘1ned :pa9s) ‘Sunjrom-doy pue vyofiuniny )
pue JO1ue( ‘9007 ‘Funyerd ‘Surroke| SNOIOAOUOWOIPUL Jo juared (eroorINy)
QAT $T00T “QI00N A ‘Surppnq :reuor) QWIOS ‘[enxosrg <ATIpear sozipuqkHq I uont) ] Do1pIUL SN
(AuoK1quuia reffeonu
‘pareurfjod-sso1d ¢ 'dds sngosonpy
800C ‘Ined :pa9s) ‘Sunyrom-doy X SIpup.Ls ")
pue YoIue( (900T ‘Funyerd ‘Surroke| X DIIPaUL *) (or2orINy)
QIAT £100T “QI00N A ‘Surppnq :[euor) (o1qnedwos-Jos) renxasrg :uIsuo pugqAHq BISY JSEaUINOS QwIf ‘UowdT  Y99qsQ () uowi] sn.)y
(AuoA1quia re[eonu
‘poreurjod-ssoro
:pa9s) ‘Sunjrom-doy SQuO[d
800 ‘IIned pue ‘Funyerd ‘Surroke| Suy[as awos ‘SuIssorono SIQUASUOD Y)IM (eeaorINy) N999sO
Yorue( {7007 “@I00IN A ‘Surppnq :reuor) OTUOAIqUIQOUOTA A[rern3ar sozIprigAH BISY JSEOUINOS ofowwung ("1 S1pup.S snag)
(AuoK1quuia reffeonu
‘poreurjod-sso1o
800C :pads) ‘Suryrom-doy $SOIO umowun
‘Jmed pue yoruef ‘Sungeis ‘Surroke| ‘perjonuosun (evoorIny]) UL, Xq
1002 “Te 10 o101g A ‘3urppnq :[euo[) Jo jonpoid a3eueydio uenad[y QUOUAWR[)  MOY PUNUIUI]D STATID)
(AuoA1quia re[eonu
‘pareurjod-ssoro
:pa9s) ‘Sunjrom-doy s1pup.LS )X odue[g
800 ‘IIned pue ‘Funyerd ‘Surroke| DIDINIYL ") (eeooeIny)
Yorue( {1007 “@I00IN A ‘Surppnq :reuo[) sixrwody urSuo puqkHq i soSuelo mog ] WNUDIND SN
(AuoK1quuia reffeonu ‘dds o[Suimg
‘poreurjod-sso1o STAJIDOIDIPA X OGSO
800C ‘Ined :pads) ‘Suryiom-doy (AuoK1quiakjod (1) sppuvs8 )
pue o1ue( (900T ‘Funyerd ‘Surroke| pue AuoAIquua Ie[[oonu) X ] DI ) Q[SuImg (‘usuyD)
QAT £100T “QI00N i ‘Surppnq :[euo[) J[quedwoo-j[as ‘[enxasig :urSuo puqAy i QUII| UBDTXIA pIjof1UDAND SNAJ1D)
800¢C
‘[Ined pue yoruef (Passo10INo :pass)
£900C Q14T ‘000T {s3umnd 10 ‘Surppnq (oraorqR,)
‘ydoH pue K1eyoz { ‘Sunjeis uoros :[euo[) ("SAD [enxasIq) Snord0IJ A 1seq 9[PPIN qoreD) "1 vnbijis LIUOIDLI)
LOOT “AOITWIPRIA
pue BAOURAT /00T
“Te 10 SueT 4007
“Ie 10 eI9paU0)) (Sunyei3d ({sesneone)) pue nuIsAyYd (oeooede,)
‘8007 “Te 19 TUOMBIN ~ $7 =X7 =Ug :[RUO[D) PAAS snowreSoydIp ‘SNOTOSUOTA A[pear azIpqAH AInT, 1SeaIION ueadoing TITIAL PAIDS DIUDISD))
SQOUAIRJY 'sdod (A18pU003s) (*sdod aAneu WOIJ JURIALIP SQATIR[QI suIguo (sur3uo jo "ou) QUIBU UOWWO)) (Arrure,]) seroadg
pareanno  Arewd :uoneSedord  J1 “sdod pajeanino ur wiaysAs  yim moyp ouas Surouo Jo "ON U110 Jo uoI3oy
Jo Aproid Surpaalq) wdsAs Surpaarg ‘urguo ‘uonezipuqAy

‘penunuo) "7 AT4V],



AMERICAN JOURNAL OF BOTANY [Vol. 98

1396

(Surrake] :[euo[d)

(evooepuideg)

900T ‘914 A £PasSOINNO :PIg Snowre3oydIp ‘SNOIOA0UOIA A A BUIYD) UIYINOS ERlinlg| uuos SISUUIYD 11T
UoNEIIUNWWOD M 9P
[euosiad (‘wey)
‘ZApurUIOYq pydad
-orowoy ) £00T -00ma] T
“Ie 19 say3ny soroads projdAjodoe  jo suiuo (eeaoeqe)
00T ‘rerez J[qeLIeA Pa9s renxosrg PAIRANNO [BIOADS ordnmy BOLIOWEOSIA ‘ueg “dds vuavonay
010T "I 19
uuny 10Qg AUoIS apoq pwjIsIs
pue souey {000T (3unyeis :[euoyo) UM UonezIpLqAy (oeooepue[3n()
‘ydoy pue Areqoz ¢ =Xxg=1ug {PISSOIOINO :PAAS SNOWBIOYDIP ‘SNOIIOUOIA oyroadsiup A BISY 1SoMyInos nurep ] v13a4 supyIng
900T ‘2141
8900 T8 10 AJSTY] suonerndod pejeanno pue  UOISOI UBQUBRIINIPIIN
{0007 ‘JdoH pue (poos) ‘Sunjeid aAneU Ul Juowdo[oAdp Iniy AU} UI SI0JSIOUE PIM A3[[eA uepIof
A1eyoz Q96| ‘A210)§ 97z =Xxg=ug 10 sSumnd :feuo[) drdresouayired ¢Snord0Ipouin Uy)NMm uonezIpLqAyq 1 IomoT 9seq Q[ppIA 811 (9BAORIOIN) POLIDD SNOL]
Juowrasoxdur
doio 103 uonezipuqAy (oB208I21Y)
9/6] ‘UOPIRH g =X7=1Ug PISSOINNO :padg SNOIOQOUOIA oyroadsiouy I BOLITY ISOM wred (10 ‘boef sisuaauns siav)g
SIONs uowrwIsIog (eraorUAqY)
900 QIAT 06 =X9 =ug 10 S3umnd :[euo[) SNOISAOI A A BOLIOWY YMON  UROLIDWY YMON 7 pupiuidaia soildsorq
(uononpoid
jinuy ordresouayyred
8007 ‘Tned pue ‘s1omop onrporydeurroy)
Yoruef <900 QAT snorodouowowre3Ajod (evaoruaqy)
‘8661 “Telo vINWER], ()6 = X9 = ug (poos) ‘Sunjeis ;Jeuor) ‘SNOTOA0IP ‘SNOTOAOUOIA 1A A BTy UOWIWISIOJ ‘quny[, 1ypy sosldsorq
(yuowdojorap
ymuy ordreoouoyyred) ‘sromop (ovoorUaqy)
900T Q14T (, (Sunjeis :feuolo) {paog QW ‘SIOMO]J [BNXASIg 1A A BOLIOWEOSIA odes yoeg ‘boef udSip sosddsorq
600¢
‘enog pue 1908000g
1900€ I T
002 “Te 19 U0ssIog (Apurewrad — (vsA0 o[qnedwod-J1os owos)
£200¢ ‘UTWERIPUOA PISSOIINO :Pads) orquedwoour-jjos Arerouad TITAL Pusixput *)) pue
pue sweq ‘3unjeid 10 ‘Jurrake| ‘Snowre3oydIpoIa)Y 1 DUANOD *D) YPIM uely ‘Aayany, (evoor[Mmag)
‘8661 “Te 10 rodwog @ =ug ‘SOUIOZIYT :JEUO[D) ‘snorooouoly  ‘suonerndod oaneu uy 9 ‘UBQUEIISNIPIIN jnujezey " pupjjaap snjki0)
QI00IN 'S
L00T saproasna -y
“Te 19 uLmeN 200¢ pue Iouya0I] 'Y X9
“re1e Auoyiuy  pp=xp=ug (Sunjeid 9rquedwod-[os auR1d pioydaund *) (oroorIqNYy)
9/61 ‘eplomio] ‘projdendofy ‘s3urno :euo[d) {pads ‘SIQMOYJ [enxastg woij urduo puqiAy A erdoryg 930D 1 D21GDAD DAJJO)
UONEOTUNWWOD
reuosiad ‘uas|Q "y
$00g ‘uuno (Suyres) ursegq uead() UeIpu[ (erooRO0IY)
$9L6]1 ‘PeIYAIYM E =xg=ug pass 3uISS0I0NO ‘SNOIOAOUOIA UMOUY QUON ¢ ‘uiseq uedd( oyroeq 1nuo0d0) 1 42fionu $020)
(AuoK1quia refeonu
‘pajeurfjod-ssord (1oAeu
:pads) ‘Sunyiom-doy S1pup.s *) ‘poo[q ‘ssafproe
800¢ ‘[Ined pue ‘Sunyerd ‘Surioke| KuoA1quia Iejaonu X DIDINOAL ") puo[q /UOWIWOD) (eeaoeIny)
Yorue[ (1007 QIO i ‘Surppnq :reuor) o[qnedwos-jos ‘renxasrg ursto puqhyq ¢ i o3ueIo Joom§ N02qQSQ SISUUIS SNAJL)
SQOUAIRJY 'sdod (A18pU0o3s) ("sdod eAneu woly JUIIP SOATIR[QI suIguo (sur3uo jo "ou) QuIBU UOWWO)) (Arrure,)) seradg
pareanno  Arewnd :uonesedorg  J1 “sdod pajeanino ur wasAs  yym mop duas Surouo Jo "oN uIS110 Jo uoIoy
Jo Aprojd Surpaaiq) waIsAs Surpaarg ‘uI3uo ‘uonezipuqAy

‘ponunuo) 7 414V,



1397

MILLER AND GROSS—PERENNIAL FRUIT CROP DOMESTICATION

September 2011]

900 ‘A&
00T “'Te 19 pneae],

(a1qnedwoo-jas)
9rquedwoour-J[as

(9r20BSOY)

(Q9L61 ‘SUDIeAN 7€ = X§ = ug (pa9s) ‘Junyeid :euo() ‘SIQMOYJ [enxastg ON I eIseIng A119Y0 In0S ] SHSDADD SNUNL]
600T e 39 [[o1m0)D (PassOIINO :pads)
00T “'Te 10 pneae], £$3003S1001 P[IM srquedwodur-§[as BOLJY (er208s0y)
‘Q9/L6T ‘SUDle\\ 9] =xg=ug ojuo Sunjyeis ;Jeuor) ‘SIOMO[J [enXosrg ON A uwroyjiou ‘odoing K1197D) 190mMS 1 (1) wnian snunag
:L00T “Te 12 9H
:900¢ *9I&T :900T
“Te 39 LIepeyy (00T
“Te 10 AMUSeIA *€00T
“Ie 19 eAdkeAIuaqayy (e1sy
£€007 ‘ySurs Jrquedwoour-Jjos UIISOM
{q9L61 ‘SunIem (Pass0I0IN0 10 PIJ[As 10 9[qnedwod-J[as ‘eury) (or208s0y)
{6681 ‘UrmIe( 9] = ug :pes) Sunjeid :[euo[) ‘SIOMO[J [enXasrg { UIISoM) 7 BUIYD) UID)SBAYMON jooudy T DIDIUIULID SHUNLJ
(9e20R)OR))
q ‘®600T ‘00T Pa9s ‘sayouriq (o1qnedwoo-jjos) suonendod ‘qayorg ("sS0D-"10Y)
“[€ 12 ZIRUIY-019)0) pajuerd :feuo) Surssoroino ‘renxastg  adyonyd g plim Y BOLIOWEBOSIA adryory) ad1yo1yo viysvjog
600C
“[e 30 wefueys 8007
“IeI9 IR 00T “Te R (passo10Ino (quowdo[aaop jiniy (eroorIpIEdRUY)
USIYP[OD-UR[OD) ()€ = X7 = Uy :Ppass) ‘Junyes :[euod) ordresouayyred) snoror i {  eISY [eNUd) yInos omyorIsIy T D424 DIODISIF
00T “Te 19 "qxoy (1) SLIS2A)AS o
Z313J-Z[BZU0N) “boef vipujoar g
££00T ‘103anT ‘pneqey) xg
pue oey)d 000T (Passo10no (s1romoy JIOH SI1SUILIDUDD ] (9e20RIA1Y)
‘ydoy pue AIeyozZ Q¢ = X7 =ug :Pads) SIONS ([eUO[D) onipoydewIay) snoroeoIq ym 3uro3uQ i { BOLIJY UIOUION wyed oreq "1 n42f1)K10Dp X1U20Y ]
‘Suaidg
violfinand g pue
9002 QAT (passoI10no snoweSoydIpoIa)ay ‘SN PUDIPIIYDS ] (eeooraneT)
£200T ‘1ARTT pue AyR] ¢ = ug :pads) ‘3unjeid :;Jeuo[) {SIOMO [enxasTg M UoneZIpqAH A BOLIOWEBOSIIA 0pEO0AY [Tl PUDILIDWD DISAIJ
900¢T
“Ie 19 uoldIg 900¢ Qrquedwodur-J[as uiseq [CLehlR(0))
“Ie 19 opreq ‘000¢ Sunjeis 10 9[quedwoos-J[os (SI9)SBI[0) SAAI[O UBQURLIDIPIA vavdoina “1eA vavdoina
‘Q[IAIO pUR pIRUSd  Qf = X7 = Ug 10 S3umnd :[euo) SNOIDQ0UOWOIPUY  PIM YIIM UONRZIPLIQAH 73 UI9)SoMm “)SBE JeaN A0 -dsqns | vavdoina o))
L00C  ge=Xxg=ug
IQUOBZIBMUDS pUE 'SAD Jsouwt (Adxeoouayyred B[[0D) DUDISIqIDG "
uosteH-do[soy ‘gz =X =ug e1a uononpoid X "[[0D pIpUIUNID "] (‘uuag Aerejn)
‘9161 ‘spuowrwulg  SA10ads pipgy - SSuMINd WLIOD [BUOD) JINIJ Q[1I9)S) SNOIDOUOIA :u1Suo puqAg ordnm BISY ISBAUINOS eueueq  (owaodesnpy) ‘dds T vsnpy
Sursso1o)no
800C ‘Ined :paas 3unjeis 10 Qrquedwodur-J[as odezoory) (eroorjodeg) uakoy
pue yorue[ :900¢ ‘OIAT i Surroke :[euo[) ‘SIOMO[J [enxasig i i BOLIOWEOSIA ‘enipodes g (‘1) prodvz vapyjUDHY
800¢ ‘IIned
pue Yorue[ /661 orokiquiakod
‘uedo(] pue JoA| (Sunjeid pue druoKIquiaouout
$L661 ‘@lypny Teuord) ‘KuoAiquid ‘o1qnedwoour-J[os (oeaorIpIRdRUY)
‘9161 ‘YSuIS O =xg=ug IR[[o0NU :pdg {SNOTIO0UOWOIPUY i {  ®IpUJ WIQ)SBAYMON oSuen T vo1pul JISUDIY
600C
‘pueqsny pue uory| saroads
10007 “'Te 30 1e0)) (passoI10Ino snppy 19Y)0 pue
2007 “Te 19 SLLIBH  "SAD X¢ QWOS 1pass) D9 008€ 9rquedwodur-J[as TIUA SMIS241KS ] (ora0Es0y)
RQLE] ‘SUDPBA\  pE =Xg =ug 2duls Sunjeisd ;Jeuo[) ‘S1IoMmOp) [enxasig s urosuQ umouwun) BISY [BHUD) oiddy  yy1og vousawop x snpppy
SQOUAIRJY 'sdod (A12pU0o3s) ("sdod oAneu wWoly JUIPIP SOATJR[QI SuIgLo (sur3uo jo "ou) QuIeU UOWWO)) (Amure,]) seroadg
pareanno  Arewnd :uoneSedorg  J1 “sdod payeanino ur waysAs  ym mop duasd Suroguo Jo "ON uISuo jo uoidoy

Jo Kprojd

Surpaaiq) waisAs Surpaarg

‘urdLio ‘uonezipgky

‘penunuo) g AI4V],



AMERICAN JOURNAL OF BOTANY [Vol. 98

1398

110T e 1

SOIAIN *900T T8 12
S *900T T8
BIOIRD)-0K0LIY

7661 T8 19 sulmN

€00 ‘00T
& 12 J0KeWRION

19L61 ‘2do)

9002 ‘S00T
‘Teryos pue 1[I

900¢
QAT {9L6]1 ‘SSuruudp

900C
QIAT 9.6 ‘sSuruuaf

9L61 ‘doayy

000C
jdoH pue Areyoz
BYLOT ‘SuDpeA

900¢
UPIYS 1900T 9IAT

800C ‘TIned pue
Soruef 1900z AT
L00T

“[e 10 OBL, ‘900

QAT 1Q9L6T ‘surpIepm
800T “Te 12

10qqV :L00T “T8 1R
OB[, ‘Q9L6T ‘SUDIEM

9661 ‘Kreyoz

pue zdmorg

16661 “Aysurziper]
1900 T 10 zado]
000T T8 30 [91ZpeID)
1q9L61 ‘SunpEAm
800C ‘IIned

pu® YOIUE[ (9007
AT f€00T ‘YSUIS
{q9L61 ‘SunpeAm

(paas) ‘Sunjeid
10 sSumno :[euo[) ‘[eNXasIq) P[IM Y} UT SNOI0IJ

8e=xg=1ug

Paas ‘uoneAn[nd
07 =Xg =ug [RIOISWWOD Ul [RUO[D)

SL=ug

J[qeLIeA (Po9s) {sSuminog feuo[)

JIqeLIBA (Pa9s) {s3umnd :Jeuo[)

9] = xg = ug (pa9s) :s3umno :[euo)

"SAD X¢ QWos

‘¢ = xg = ug (pa9s) Junjeid :jeuo()

81
‘9] = xg = ug (pa9s) :S3umnog ;Jeuod)
(d1qetres)
{ Po9s Funjeid :reuo[)
poyeurjjod

$S0I0 1O -J[S
(9] = ug :pads ‘3unjeis ;reuo[)

PIJJas 10 PAssoINNo
9] = ug :paos {3unjeis :Jeuo[)

(P9J[2$ 10 PasSOINNO
{, 1pa9s) ‘Junyeid :euo[)

(PIsSOINNO ‘pIj[as
8% = X9 = ug :paas) ‘Junjeisd :jeuo[)

s3umno :feuo)

(uoneAnno
ur s1omop o[quedwoo-jos

urSuio woiy Aeme 9[qredwod
-J19s ‘U110 JO IQUAD

Ieou o[quedwoour-J[os
{SIOMO]J [enXasIg

(uononpoid yniy
ordresouayred) snorooo1g

(*sAd 9[quedwoo-§as awos)
orqnedwoour-Jas ‘[enxosrg

(*sAd
9[qnedwos-[as) SuIssoIdno

suonendod
Jrquedwoour-J[as
1o 9[quedwod-J[as
‘SIOMO[ [enxastg

Jrqnedwoour-Jjos

ApIsow ‘sIomop [enxasig
('sAd

'sAd ordaeoouayred dwos)
Q[1}IJ-J]9S ‘SIOMOY [enxasIg
Anqnedwoos-3as awos
‘Aqredwodur-ssord

pUE -J[9S QWIOS ‘[enXasIg

Jrquedwoo-Jos

A[ISoul ‘SIomolj [enxasig
(*SAD Q[LIAIS

-uaqod) o[qnedwoo-jjos
Apsour ‘SIomopj [enxasig

(*sao o[quedwoo-jos
Qwos) a[quedwodut-§[os
{SIOMO [enXasIg

J1quedwoout-j[os
pue 9[qneduwod-J[os

JuawoAoIdur
douio 103 uonezIpLIQAY
O1109dSIOIUT QATSUXF

ON

1 uiquio "G M
uoneziptiqAy SurosuQ

JuowaAoxdur
doo 103 UOTIRZIPLIQAY
oy10adsIo)uT QAISU)XH
Juowraaoxdur
douio 103 uonezIpLIQAY
o1y109dSI0)UT QATSU)XF

JuowaAoxdur

douio 103 uonezipLqAy
oyroadsIour QAISUAXH
("pad o1sPINDI
‘0 nqg ("1

4215044d ) s10UdTU0D
[e12A9s YJIm SuroSuQ

8

snpp3uy

snuagqns ur

sa10ads )im SozZIpLIQAH
snppp3uy

snuagqns ur

sa1oads yym sozZIpLIQAH
TUIRIA 11qqom J pue
‘Ioprouyos vindoos

d Doisdad g ‘Quyaoy]
DAL J “ZZeIN-PUCH
DILIDYING J ‘TOPYIY
(‘wre) vajuSID J
)M 9[IIJIIU]
sweigoxd

Su1pealq uowod

ur pasn dIe pue

‘SIOMOY) [enxastg o[najraur axe swnid [y

©ag uerdse)

pue eag yor[g
QUQ  UIMIRq ISBH JeAN

(BOTIOWY
INOS WIAYION
uQ ‘BOTIOWBOSAA

7 ISB[ 1Y BOLIOWEOSIA

BOLIOWY

UHON WIS

‘eoLIoUWY YION

¢ useq ‘eisy/odoing

@

eoLIOWY YUON ‘(1)

¢ visy/odoing uIylION
(syuennd

orIq "pax)
sdnoi3 z ur SBaIR JUAIAYJIP
saroads ur pajednsauop

pajean[no § soroads JuareyIq

4 RISY UIOISIM
& Ised S[PPIN

BOLIDWY YINOS
i “ROLIOWIROSIA

7 PISY WI9ISOM ‘BUIYD)

i (RISY [enua)

URQURIIIPIN
¢ uIa)sey

¢ eIseIng

2)B[000D ‘0BIRD)

puowy

wnjd ueadoing

[CLEMAN W REY TN

adein ~dsqns T paafiura s1ip
(9B20RINDIAS)

1 0PIV PULOIGOIY ]

wnd3oy

‘urquiour (oed0RIpIRORUY)

9rdand ‘@y000¢ " vaundund spipuods
(CLERENON)]

Aoqyoerg “dds 1 sngny
(9e20RS0Y)

K11aqdser poy 1 Snavp1 sngny
(9e2ORLIB[NSSOIN))

sjueLIN)) “dds 1 saquy
(9B20RS0Y)

Ieod T Sumuuod snikg
(araoeoruny)

eueISowod T wnpup.dS porung
(or20RuAIN)

BARBND) 1 pavlond wmpisq
(erooesoy) [oddiq
(moxong) oisuadionu

QUILIBIOIN “TeA DI1S42d snunig

(9e20BS0Y)
yoedd yosied (1) voisuad snunig

(sea0es0y) q9oM 'V 'd
(TN S1opnp snunig

(9r20BSOY)
" DOUSIUOP SNUNLJ

SOOURIRJOY

'sdod (A1epuoo9s)
pajeAn)[Nd
Jo Aptoid

Arewnd :uonesedoig

(*sdod 2Aneu woly JudIPIp
J1 “sdod pajeanno ur woysks
Surpaaiq) waIsAs Surpaarg

SQATIR[AI
UM mop oued Juro3uo
‘urLio ‘uonezipgAy

suIgo
JO'ON

(sur3uo jo ‘ou)
uIS1Io jo uoi3oy

SQWBU UOWIO))

(Amure,]) saroadg

‘penunuo) g AT4V],



September 2011]

this is similar in some ways to determinant growth, which has
accompanied the domestication of many annuals. Finally, poly-
ploid crops have evolved from diploid progenitors in both an-
nual and perennial plant species.

ORIGINS AND EVOLUTION OF PERENNIAL
FRUIT CROPS

Understanding the ways in which tree populations respond to
artificial selection may shed light on how long-lived species
evolve in response to short-term evolutionary pressures in gen-
eral. Slow rates of evolution under domestication are expected
in perennial crops relative to annuals due to fewer sexual cycles
per unit time, the result of long juvenile phases and clonal prop-
agation (Zeder et al., 2006). Relative rates of evolution of
annual fruit crops vs. perennial fruit crops are difficult to char-
acterize; however, it is clear that some perennial fruit crops
have been responding to artificial selection pressures for as long
as annuals (e.g., fig; Kislev et al., 20064, but see Lev-Yadun et al.,
2006 and Kislev et al., 2006b), and in many aspects, they have
evolved under domestication in comparable ways (see discus-
sion above; Table 1). In this section, we examine the effect of
domestication on genetic variation in cultivated populations.
We quantify domestication bottlenecks in perennial crops by
comparing levels of genetic variation in cultivated and wild
populations. We then consider how changes in reproductive biol-
ogy, evolutionary history of cultivated populations, and hybridi-
zation influence the extent of genetic variation housed in cultivated
populations of perennial fruit crops.

Domestication bottlenecks in perennial fruit crops—Current
research on domestication bottlenecks conducted in annual fruit
crops suggests that only a subset of the total number of indi-
viduals in a wild species is initially brought into cultivation
(Doebley et al., 2006). This limited sampling results in a ge-
netic bottleneck (a reduction in genetic variation across the ge-
nome, including neutral variation) in cultivated populations
relative to their wild progenitors (Olsen and Gross, 2008). Over
time, the genetic base of cultivated populations narrows as su-
perior individuals are selectively propagated, to the point where
as a group, elite cultivars can be genetically depauperate (e.g.,
Yamasaki et al., 2005; Hyten et al., 2006). Genetic bottlenecks
in annual fruit crops result in cultivated populations that retain
an average of 59.9% (ranging from 5.5 to 119.5%) of the neu-
tral variation found in wild populations (Table 3).

Do perennial fruit crops exhibit the same type of genetic
bottleneck observed in annual plants? Comparative analyses of
perennial fruit crops and their wild progenitors demonstrate
that cultivated perennial fruit crops retain an average of 94.8%
of the neutral variation found in wild populations. Data derived
from codominant markers (allozymes, microsatellites) reveal
that cultivated perennial populations retain at least 64.8% and
up to 126.9% of the variation found in wild populations [pecan:
Riiter et al., 1999; Inga edulis Mart.: Hollingsworth et al., 2005;
red guaje, Leucaena esculenta (Moc. & Sessé ex DC.) Benth.:
Zarate et al., 2005; apple: Coart et al., 2003; olive: Lumaret
et al., 2004; Polaskia chichipe (Gosselin) Backeb.: Otero-
Arnaiz et al., 2005a; sweet cherry: Mariette et al., 2010; grape:
Aradhya et al., 2003]. Similarly, in studies using dominant
marker data (AFLPs, ISSRs) cultivated perennials retained at
least 62.5% and at most 117.8% of the variation found in wild
populations (chestnut, Castanea sativa Mill.: Mattioni et al.,
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2008; apple: Coart et al., 2003; pistachio: Shanjani et al., 2009;
jocote: Miller and Schaal, 2006). In summary, these studies
show that perennial fruit crops maintain a greater proportion of
total genetic variation in cultivation than annual crops (Table 3;
Fig. 1). In the cases of some more recently domesticated peren-
nial fruit crops, the reduction in genetic variation is likely due
to selective propagation of some individuals in a cultivated set-
ting, rather than to many generations of selective breeding that
could more appropriately be termed a “domestication bottle-
neck”. The conclusions are similar, however, if we restrict our
survey to the older perennial fruit crops such as apple, olive,
grapevine, and pistachio—these crops have retained an average
of 94.6% of the genetic diversity present in their wild relatives
(Coart et al., 2003; Lumaret et al., 2004; Aradhya et al., 2003;
Shanjani et al., 2009).

In some cases, elevated levels of genetic variation were re-
corded for crops relative to their wild ancestors. This may be an
artifact of insufficient sampling of wild populations, or it may
reflect loss of wild plants following the establishment of culti-
vated populations due to habitat destruction or extinction for
other reasons. Another possible explanation is that cultivated
populations represent the descendants of controlled crosses be-
tween geographically and genetically distinct individuals,
which may have yielded new variants carrying novel combina-
tions of alleles not found in the wild. Similar patterns have been
observed in introduced lizard populations where genetic varia-
tion exceeds variability observed in native (source) populations
(Kolbe et al., 2004). Alternatively (or in addition), somatic mu-
tations in clonally propagated cultivars may contribute to ele-
vated levels of genetic variation in cultivated perennial fruit
crops relative to their wild progenitors.

Note that comparisons between perennial and annual fruit
crop domestication bottlenecks are complicated by the fact that
most data for annual crop domestication bottlenecks comes
from cereals [barley; maize; pearl millet, Pennisetum glaucum
(L.) R. Br.; rice; sorghum, Sorghum bicolor (L.) Moench;
wheat]. Additional information comes from Phaseolus L. species,
soybean (Glycine soja Siebold & Zucc.), sunflower, and chile
(Table 3). While it would be interesting to compare studies of
long-lived, perennial fruit crops with domestication bottlenecks
in more equivalent annual domesticates [e.g., eggplant, melon
(Cucumis melo L.), squash (Cucurbita pepo L.), tomato], com-
parable studies quantifying reductions in diversity associated
with domestication are not, to our knowledge, available in the
literature. The apparent lack of information results in some
cases from ambiguity concerning the identity of the wild
progenitors of the cultivated populations or because the wild
ancestors were only recently identified. For some species, pop-
ulation genetics analyses have not yet been completed—this
is true in cucumber (Cucumis sativus L.; Sebastian et al., 2010),
eggplant (Weese and Bohs, 2010; Tiimbilen et al., 2011), melon
(Luan et al., 2008; Sebastian et al., 2010), tomato (Bai and
Lindhout, 2007; Peralta and Spooner, 2007; Labate et al., 2009;
but see Nesbitt and Tanksley, 2002 for a candidate locus
analysis), and squashes, pumpkins, and gourds (Sanjur et al.,
2002; Paris et al., 2003; Sikdar et al., 2010). Comparative analyses
of genetic variation housed in cultivated populations of these
species and their wild progenitors represent promising areas of
future research.

Overall, even with the aforementioned caveats, perennial
crops retain a greater proportion of the genetic variation present
in their wild progenitors than annual crops (Table 3, Fig. 1). A
number of factors likely contribute to differences in the width
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Continued.

TABLE 3.

%
Retained

Dom.

diversity

Wild

diversity

Reference

Measure

Domesticated species

Wild species

Common name

Lumaret et al., 2004

H, allozymes 71.9

0.323

Olea europaea subsp. europa

0.449

Olea europaea subsp. europa var. sylvestris

Olive

var. europa Western

Polaskia chichipe
Vitis vinifera

Otero-Arnaiz et al., 2005b

H, SSRs 96.6

0.660

0.683

Polaskia chichipe (Gosselin) Backeb.
Vitis vinifera L. subsp. sylvestris
Castanea sativa Mill.

Pistacia vera L.

Columnar cactus

Grape

119.4  Aradhya et al., 2003

H, SSRs
62.5

0.814

0.682
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Mattioni et al., 2008

HISSRs

0.140
0.190
0.169
0.673

Castanea sativa

0.223

Chestnut

Shanjani et al., 2009

H AFLPs 86.4

H AFLPs
H, SSRs

Pistacia vera Iran

0.220

Pistachio
Jocote

Miller and Schaal, 2006

90.7

Spondias purpurea
Inga edulis

0.187
0.657

Spondias purpurea L.
Inga edulis Mart.

102.4  Hollingsworth et al., 2005

94.1

H,. SSRs Mariette et al., 2010

0.640

Prunus avium

0.680

Prunus avium L.

Sweet cherry

94.8

Perennial mean

of the genetic bottleneck accompanying annual and perennial
domestication. For example, a principal difference between do-
mesticated annual and domesticated perennial fruit crops is ju-
venile phase length. Differences in juvenile phase length mean
that over similar time periods, domesticated perennials have
fewer sexual cycles on which selection can act relative to annu-
als. Three additional factors likely play critical roles in shaping
the amount and structure of neutral genetic variation in culti-
vated tree populations: (1) mating system and mode of repro-
duction, (2) geographic origins of cultivated individuals, and (3)
intra- and interspecific hybridization. Recent studies addressing
these topics in domesticated systems provide insights into their
impact on neutral genetic variation, as discussed below.

Mating system and mode of reproduction—Mating system
and mode of reproduction have been identified as primary de-
terminants shaping the amount and structure of genetic varia-
tion in natural tree populations (Loveless and Hamrick, 1984;
Hamrick and Godt, 1990; Hamrick et al., 1992; Duminil et al.,
2007, 2009). Perennial fruit crops and the natural populations
from which they were derived represent nearly the entire range
of plant reproductive systems and include species with bisexual
flowers, unisexual flowers, or a combination of the two (e.g.,
cashew, citron: Citrus medica L.; black sapote, Diospyros dig-
yna Jacq.; mango, Mangifera indica L.). Species with bisexual
flowers include plants that are self-compatible [e.g., atemoya,
Anona squamosa L. X A. cherimola Miller; white sapote; lime,
Citrus aurantiifolia (Christm.) Swingle; coffee, Coffea arabica
L.; plum; peach; pomegranate; cacao, Theobroma cacao L.;
grape], self-incompatible (e.g., custard apple: Annona cheri-
mola Miller; apple, olive, sweet cherry, almond, pear),
dichogamous [e.g., paw paw, Asimina triloba (L.) Dunal], het-
erodichogamous (avocado), or heterostylous (carambola: Aver-
rhoa carambola L.). Other domesticated perennials grown for
their fruits have unisexual flowers and are monoecious (e.g.,
breadfruit/jackfruit: Artocarpus J. R. Forst. & G. Forst. spp.;
pecan, chestnut, coconut, hazelnut: Corylus avellana L., oil
palm: Elais guinnensis Jacq., fig, lychee: Litchi chinensis Sonn.,
banana, pistachio), or dioecious (e.g., carob, date palm, grape,
jocote, persimmon: Diospyros L. spp.). More examples of each
reproductive system are listed in Table 2. In addition, perennial
fruit crops exhibit a range of pollination syndromes, including
pollination by insects, birds, bats, and wind.

Mating system and pollination syndrome are important de-
terminants of variation in natural populations; in cultivated
populations, mode of reproduction also plays a critical role. An-
nual crops are mainly grown from seed; however, only a frac-
tion of perennial fruit crops are primarily seed-propagated (e.g.,
black sapote, oil palm, Leucaena Benth., walnut; Table 2). Ap-
proximately 75% of domesticated trees are propagated primarily
clonally through cuttings, layering, grafting, or nucellar embry-
ony (seeds are genetically identical to the parent; Table 2).

Clonal propagation restricts the number of sexual cycles sep-
arating domesticated populations from their wild ancestors
(Zohary and Spiegel-Roy, 1975; Zohary and Hopf, 2000; McKey
et al., 2010). In the simplest domestication scenario, seeds or
cuttings of one or a few individuals are taken from wild popula-
tions and transferred to a cultivated habitat, where they are
maintained through clonal propagation. In this case, selection
has occurred only once on a single sexual cycle, effectively iso-
lating a favored variant that will increase in frequency with clonal
reproduction. Many perennial species are highly heterozygous
(Petit and Hampe, 2006); clonal propagation functions to maintain
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Variation retained in domesticated populations
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heterozygosity at the individual level (Zohary and Spiegel-Roy,
1975), but promotes genetic homogeneity at the population
level.

In a more realistic scenario, domestication of perennials ap-
pears to have been a spatially and temporally dynamic process,
where seeds and/or cuttings are removed from geographically
distinct wild populations over the course of many hundreds or
thousands of years. Once in cultivated settings, these individu-
als contribute to the domesticated pool either through directed
breeding efforts characteristic of modern agriculture, or through
inadvertent gene flow with other cultivated individuals. Culti-
vated individuals are still highly heterozygous under this sce-
nario, but in this case clonal reproduction results in cultivated
populations that are genetically heterogeneous because clones
represent a broader sample of variation than is found in any one
natural population (Fig. 2).

Evolutionary origins of domesticated tree populations—The
geographic origins of crop plants have fascinated botanists for
over a century (e.g., de Candolle, 1886; Harlan, 1971; Smith,
1995). Vavilov (1992) identified seven global centers of do-
mestication where crop populations originated from native
plant species, based on the geographic distributions of extant
crops. Subsequent studies used archaeological and genetic data
to pinpoint from five to 24 regions of origin (e.g., Gepts, 2004;
Purugganan and Fuller, 2009). Early studies suggested that
crops evolved once from native populations growing in a single
geographic region (Vavilov, 1992), and several seed-propagated,
annual crops conform to this expectation, including maize
(Matsuoka et al., 2002), einkorn wheat (Triticum monococcum
L.; Heun et al., 1997), soybean (Li et al., 2010), sunflower
(Harter et al., 2004), and upland cotton (Gossypium hirsutum
L.; Brubaker and Wendel, 1994). However, in a recent review

Perennial

Percentage of variation in retained in domesticated annual and perennial fruit crop populations compared to their wild relatives (c.f. Table 3).

of crop evolution, roughly half of the 22 annual fruit crops
for which geographical/genetic origins had been explicitly
studied had either confirmed or potential multiple origins
(see Table 1 of Burger et al., 2008). Examples of such crops
include barley (Willcox, 2005; Fuller, 2007; Morrell and Clegg,
2007), Asian rice (Londo et al., 2006), common bean (Gepts
et al., 1986; Sonnante et al., 1994; Chacén et al., 2005), and
potentially one of the species of domesticated chile (Aguilar-
Meléndez et al., 2009). The number of crops with multiple
origins would be larger when considering multiple domestica-
tion events that occur within the same genus but result in differ-
ent domesticated species; examples of these include the two
species of domesticated cotton (Gossypium hirsutum and G.
barbadense L.; Brubaker and Wendel, 1994; Westengen et al.,
2005), domesticated Asian and African rice (Oryza sativa and
0. glaberrima Steud.; Semon et al., 2005; Londo et al., 2006),
multiple domesticated species of chiles (Capsicum; Pickersgill,
1997), chenopods (Chenopodium L.; Ruas et al., 1999; Smith,
2006), squashes and gourds (Cucurbita L.; Decker-Walters
et al., 2002; Sanjur et al., 2002), and beans (Phaseolus L.;
Gutiérrez Salgado et al., 1995; Chacén et al., 2005). Overall,
our current understanding of annual crop domestication indicates
that multiple origins are at least as likely as single origins.

The apparent number of domestication events has been ad-
dressed as part of a larger debate about the tempo of domestica-
tion (Tanno and Willcox, 2006; Allaby et al., 2008; Olsen and
Gross, 2008; Ross-Ibarra and Gaut, 2008; Honne and Heun,
2009; Purugganan and Fuller, 2011). The rapid-transition model
of domestication posits that domestication happens quickly and
that most crop populations consist of individuals derived from
one or two narrow geographic ranges. In contrast, the protracted
model of domestication suggests that domestication takes place
over an extended timeframe and that cultivated populations
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Fig. 2. Origin and evolution of perennial fruit crops. All crops are derived from native plant populations; consequently, “crop species” generally in-
clude two types of populations: 1) domesticated populations, trees that are evolving under artificial selection, and 2) native populations, the wild ancestors
of the cultivated populations. Within native populations, some populations are the direct ancestors of cultivated populations (“ancestors”) and others did
not contribute directly to the cultivated pools (“non-ancestors”). Recent molecular studies indicate that domesticated populations of perennial fruit crops
maintain a large portion of the total genetic variation of the species. The broad genetic bottleneck that accompanied the domestication of many perennial
fruit crops is likely the result of a combination of factors, including: a) relatively few sexual cycles separate domesticated populations from their wild
progenitors; b) multiple geographically and genetically distinct ancestral populations; c) hybridization (including hybrid origin of cultivated species, hu-
man-mediated gene flow, and accidental gene flow with native populations (both ancestors and nonancestors) and sympatric congeners (not shown).

consist of individuals from diverse geographic origins that un-
dergo significant gene flow during the domestication process.
Understanding the geographic origins of perennial fruit crops
may shed light on the early stages of domestication because
fewer sexual cycles have occurred between domesticated pe-
rennials and their wild progenitors than in annual crops.

The geographic origins of perennial fruit crops have been ex-
amined by numerous authors (de Candolle, 1886; MacNeish,
1992; Zohary and Hopf 2000). In a trend that matches or ex-
ceeds what is seen in annual crops, it appears that domesticated
fruit tree populations often have diffuse origins, with cultivated
populations consisting of individuals derived from multiple,
geographically distinct areas (Fig. 2). For 18 species with avail-
able data (not including the multiple species of currants [Ribes
L. spp.] or blackberries [Rubus L. spp.]), only five perennial
fruit crops have been confirmed as having a single origin, while
12 have multiple origins (Table 2). There are six genera with
multiple domesticates (Annona, Artocarpus, Citrus, Diospyros,
Prunus, and Rubus), some with more than five domesticated
species. One example of a perennial fruit crop with multiple
origins is the olive, one of the oldest and most well-studied do-
mesticated tree lineages. Wild olive trees are native to the Med-
iterranean Basin (Zohary and Spiegel-Roy, 1975; Terral et al.,
2004), but pinpointing the precise geographic origins of culti-
vated populations has proven difficult. Some researchers have
suggested a western Mediterranean origin (Terral et al., 2004);
and that olives in the eastern Mediterranean represent feral
forms (Bronzini de Caraffa et al., 2002). Native olive (oleaster)
populations exhibit substantial geographic differentiation be-
tween the western and eastern parts of their range (Besnard and
Bervillé, 2000; Besnard et al., 2002; Bronzini de Caraffa et al.,
2002; Lumaret et al., 2004; Terral et al., 2004; Breton et al.,
2006). Molecular genetic data have provided evidence for at
least two geographic origins of cultivated olives, one from each
of these general areas (western and eastern Mediterranean re-
gions; Besnard and Bervillé, 2000), and one study identified
seven geographic origins (Breton et al., 2006).

Although most commercially viable fruit trees were domesti-
cated thousands of years ago, making many aspects of the pro-
cess opaque, there are species that have been brought into

cultivation more recently. Pecan, for example, is a recently do-
mesticated tree with a well-documented history that offers an
opportunity to consider evolutionary processes during the early
stages of tree domestication. Pecan is native to the river flood-
plains of the central United States, with isolated populations
found in northeastern and central Mexico (Stone, 1997; Sparks,
2005). This species has been domesticated over the last 150
years (Manaster, 2008), and breeding records indicate that cul-
tivated pecan populations were derived from numerous, geo-
graphically distinct ancestral populations, as well as from
seedlings resulting from accidental and intentional crosses be-
tween cultivars and native or cultivated individuals. Pecan
clones and seeds were transported widely; transplants have ex-
changed genes serendipitously with other cultivars and with
sympatric native populations (L. Grauke, U. S. Department of
Agriculture, personal observation). On occasion, resulting off-
spring were incorporated into cultivated populations as seed-
ling selections. In addition, cultivars from different geographic
regions were crossed as part of controlled breeding programs.
Over this short time span, active breeding has led to domesti-
cated individuals with larger fruits and a greater percentage of
kernels relative to wild populations (Rice, 2005). Despite mor-
phological differences, comparative analyses of allozyme vari-
ation in cultivated and native populations failed to detect
reductions in variation associated with a domestication bottle-
neck (Riiter et al., 1999). Recently domesticated perennials like
pecan offer ideal study systems for understanding the early
stages of domestication.

Hybridization in perennial fruit crop lineages—Hybridization
has long been recognized as an important force in domestication
(Darwin, 1899; Stebbins, 1950). Extensive human-mediated
gene flow related to breeding efforts sparked a reconsideration
of the meaning of species boundaries in crop systems (Harlan
and deWet, 1971). At the time, the dominant species concept
was based on the idea that geographic isolation led to reproduc-
tive isolation, which resulted in speciation (Mayr, 1940). Ob-
serving that cultivated populations often have the capacity to
exchange genes with related species, and that the product of
those crosses often yielded fertile offspring, Harlan and deWet
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(1971) proposed the gene pool system. This system describes
pools of genes available to crops, regardless of taxonomic
boundaries, and includes (1a) cultivated (domesticated) popula-
tions, (1b) ancestral (undomesticated) pool from which the do-
mesticated populations were derived, and (2) related but distinct
species capable of exchanging genes with cultivated popula-
tions. Recent molecular analyses shed light on the extent of hy-
bridization among gene pools of domesticated perennials crops
cultivated for their fruits, including (1) hybrid origins of peren-
nial fruit crops, (2) deliberate, human-mediated gene flow be-
tween perennial fruit crops and their wild relatives, and (3)
accidental gene flow between perennial fruit crops and their
wild relatives.

Hybrid origins of perennial fruit crops—Clonal reproduction
of many perennial fruit crops makes it possible to permanently
capture hybrid genotypes, even F, hybrids, and any associated
traits, such as lack of seeds (in sterile hybrids) or general hybrid
vigor (Stebbins, 1950). Many prominent fruit crops are the re-
sult of interspecific hybridization events (sometimes with as-
sociated genome doubling) and reproduce or are propagated
through clonal mechanisms, especially in Citrus (Moore, 2001).
Other permanent interspecific hybrids include Annona squa-
mosa X A. cherimola, Artocarpos altilis (Parkinson) Fosberg x
A. mariannensis Trécul, and the many banana cultivars result-
ing from crosses between Musa acuminata Colla and M. balbi-
siana Colla (Lyle, 2006; Zerega et al., 2006; Heslop-Harrison
and Schwarzacher, 2007). The role of early-generation hybrids
is quite different in annual crops; while F, hybrids play a very
important role in modern breeding and production practices
(e.g., hybrid maize; Troyer, 1999), they must be recreated every
year rather than being maintained and propagated over time as
is possible for perennial crops.

Some domesticated perennials that result from hybridization
form independent lineages capable of sexual reproduction
rather than persisting solely through clonal reproduction (al-
though on a practical level they may be propagated in a variety
of ways); these hybrid lineages are the result of polyploid or
homoploid hybrid speciation events like those observed in nat-
ural populations (Rieseberg 1997; Soltis and Soltis 1999). One
example of the hybrid origin of a fruit tree is in the genus Leu-
caena, for which sympatric cultivation of previously allopatric
species resulted in multiple formations of the allotetraploid L.
leucocephala (Lam.) de Wit, now the most widely cultivated
species in the genus (Hughes et al., 2007). In this way, hybrid
origins of perennial crops are similar to those of annual crops,
where allopolyploidy is also an important mechanism for the
origin of new domesticates; the most familiar examples are the
polyploid wheat series (allotetraploid Triticum turgidum L. and
allohexaploid 7. aestivum L.) as well as the domesticated pea-
nut (Arachis hypogaea L.), a tetraploid resulting from hybrid-
ization between wild diploid species (Kochert et al., 1996).

Deliberate, human-mediated gene flow between perennial
Sfruit crops and their wild relatives—The potential contribution
of wild relatives for crop improvement has long been recog-
nized and today forms an important component of breeding and
conservation programs for most cultivated species (Darwin,
1899; Kovach and McCouch, 2008). Using wild species in a
breeding program requires that the undesirable traits of wild
species be separated from the desirable ones in order for them
to be used; this is usually accomplished via marker-assisted se-
lection (MAS) (Gygax et al., 2004; Patocchi et al., 2009). For
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the most part, crosses between domesticated perennials and
their wild relatives have been used to identify genes contribut-
ing to resistance to abiotic stress, fungal and bacterial diseases,
or pests such as nematodes and insects (Dirlewanger et al.,
1996; Luby et al., 2001; Foulongne et al., 2003; Bus et al.,
2005).

Although most crop progenitors are, indeed, inferior to culti-
vars for agronomic traits, QTL mapping in annual crops has
revealed the existence of cryptic variation for domestication
traits in wild progenitors, i.e., alleles in wild species that can
have a positive effect on agronomic traits in crops (Weller et al.,
1988; Xiao et al., 1996; Tanksley and McCouch, 1997; Jiang
et al., 1998; Burke et al., 2002). This same pattern has also been
observed in an advanced backcross between peach and its wild
relative Prunus davidiana (Carriere) Franch., with several
QTLs in the wild species contributing favorably to peach fruit
size and sugar concentration (Quilot et al., 2004). Thus, it is
possible that MAS could be applied to exploit cryptic variation
to improve fruit crops in the future. Other uses of hybrids in-
clude the deliberate production of sterile hybrids, such as the
intergeneric hybrids between Vitis and the North American ge-
nus Muscadinia (Planch.) Small, which have been used as root-
stocks (Mullins et al., 1992). While these sterile hybrids do not
contribute to long-term gene flow, they do represent a unique
genotypic class made available through hybridization.

Accidental gene flow between perennial fruit crops and their
wild relatives—Unintentional gene flow between cultivated
populations and their wild relatives is common (Ellstrand et al.,
1999) and occurs both in regions where cultivated and wild spe-
cies overlap naturally and where domesticated species have
been brought into contact with previously allopatric relatives.
Numerous studies have documented crop—wild gene flow in
seed-propagated annuals such as beet (Beta vulgaris L.), com-
mon bean, radish (Raphanus sativus L.), and sunflower (Beebe
et al., 1997; Linder et al., 1998; Snow et al., 2001; Viard et al.,
2004) and in the clonally propagated belowground crops cas-
sava and potato (Duputié et al., 2007, Scurrah et al., 2008). In-
terspecific gene flow between cultivated populations and wild
relatives has also been observed in perennial food plants. In a
study of two cultivated walnut species growing in sympatry in
several small villages in Yunnan, China, genetic variation
derived from microsatellite data were consistent with interspe-
cific hybridization between domesticated Juglans regia L. and
native J. sigillata Dode (Gunn et al., 2010). Similar patterns have
been identified among species of cultivated and wild hazelnut
(Corylus avellana and C. maxima Mill.; Palmé and Vendramin,
2002) as well as cultivated and wild date palm (P. dactylifera
and P. canariensis Hort. Ex Chabaud; Gonzalez-Pérez et al.,
2004). In a different approach, Kron and Husband (2009)
showed that interspecific pollination was occurring at a high
rate between wild Malus coronaria (L.) Mill. and the introduced
domesticated apple, although no living hybrids were detected.

In contrast to these examples of interspecific hybridization,
we know relatively little about hybridization between perennial
fruit crops and their direct wild progenitors. Undoubtedly, this
is due in part to the relatively small reductions in genetic varia-
tion associated with perennial crop domestication, which makes
the task of distinguishing shared ancestral variation from recent
hybridization even more difficult than in traditional domestica-
tion study systems. Molecular evidence for crop—wild hybrid-
ization has now been presented for two iconic Mediterranean
crops, grape and olive (Breton et al., 2006; Lopes et al., 2009).
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In the case of grape, genetic evidence indicates gene flow from
the cultivated species to wild populations and also reveals that
several cultivars display a high percentage of wild ancestry (Di
Vecchi-Staraz et al., 2009; Lopes et al., 2009; Myles et al.,
2011). This latter finding emphasizes the role that wild progeni-
tors have played in the development of new varieties of domes-
ticated crops. In these cases, although the hybridization event
itself is unlikely to be human-mediated, the selection and main-
tenance of admixed lines is the product of human choice (Jarvis
and Hodgkin, 1999), and so the process is more controlled than
is the case for gene flow from the crop into the wild. The possi-
bility for hybridization between feral (Olea europaea L. subsp.
europaea) and wild olives [Olea europaea subsp. cuspidata
(Wall ex. G. Don) Cif.], both invasive in eastern Australia, has
recently been documented (Besnard et al., 2007). Although this
information is based on a limited data set, it raises the intriguing
possibility that crop—wild hybridization may play a role in gen-
erating weedy trees, similar to what has been shown for conspe-
cific crop weeds in annual species (Barnaud et al., 2009; Gross
and Olsen, 2009).

In the New World, gene flow between traditional and modern
cultivars has been documented in avocado (Birnbaum et al.,
2003). This study suggested a low rate of gene flow from mod-
ern to traditional types of avocado (<20% of seedlings had a
modern or “grafted” parent)—a hopeful outcome for the pros-
pect of preserving traditional and wild diversity in the presence
of improved cultivars, at least in this species. Although cer-
tainly possible, we know of no documented cases of gene flow
from cultivated accessions to wild avocados or from wild avo-
cados into modern (or traditional) cultivars. Future studies em-
phasizing population-level sampling of both domesticated
species and their wild relatives will shed light on the extent to
which genes move between wild and domesticated perennial
crops.

GENETIC BASIS OF PERENNIAL FRUIT CROP
DOMESTICATION

What is the genetic basis of perennial fruit crop domestica-
tion? The answer to this question is likely to be complex in pe-
rennial crops, due to the diversity of modes of propagation for
different species. For example, we might expect that the domes-
tication genetics of outcrossing, seed-propagated fruit trees will
resemble the patterns seen in outcrossing, seed-propagated an-
nual plants, i.e., genes of large effect with regulatory changes
dominating (Doebley et al., 2006; Gross and Olsen 2010). The
predictions for clonally propagated crops are less clear. Under
the simplest scenario, a favorable mutation of major effect
could be preserved through continuous clonal propagation, but
realistic domestication scenarios are likely to be more complex
(see previous section Mating system and mode of reproduc-
tion). It is also unclear how easily favorable traits could spread
through domesticated populations with little sexual reproduc-
tion; this spread of domestication genes through a species is a
hallmark of annual crop domestication genetics (e.g., Sweeney
et al., 2007). Our understanding of perennial crop domestica-
tion genetics is still nascent, but recent advances promise inter-
esting results.

Genetic mapping—QTL mapping has served as a major av-
enue for understanding the genetic basis of domestication in
plants. QTL mapping requires the generation of a recombinant
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hybrid population between two genetically and phenotypically
divergent parents; in the case of plant domestication, the rele-
vant cross would be between individuals from domesticated
plants and their closest wild relatives or potentially between a
landrace and an elite cultivar. While not precise, QTL mapping
allows the detection of genomic regions associated with domes-
tication traits and can answer the question of whether changes
under domestication are due to many changes of small effect or
a few changes of large effect. This approach has been applied
extensively to annual crops and has shown that many domesti-
cation traits seem to be caused by relatively few changes of
large effect (i.e., the traits are controlled by QTLs that contrib-
ute a minimum of 20% of the phenotypic variance in the map-
ping population; reviewed in Burger et al., 2008).

Neither the development nor the maintenance of a mapping
population are trivial undertakings for a long-lived organism,
but QTL studies have been conducted in many fruit tree genera,
including Castanea (Casasoli et al., 2004), Citrus (Garcia et al.,
2000), Coffea (Amidou et al., 2007), Cocos (Baudouin et al.,
2006), Malus (Kenis et al., 2008), Prunus (Quilot et al., 2004;
Zhang et al., 2010), Persea (Sharon et al., 1998), Theobroma
(Crouzillat et al., 1996; Crouzillat et al., 2000), and Vitis
(Cabezas et al., 2006). Because the goal of most of these studies
has been crop improvement, crosses have mainly been within the
domesticated species (e.g., apple cultivars Telamon X Braeburn;
Kenis et al., 2008), but also include some wide crosses between
two domesticated species (e.g., almond X peach; Illa et al.,
2010) or between a domesticated species and a wild species that
is not a progenitor of the crop [e.g., Citrus limon (L.) Osbeck
X Poncirus trifoliata (L.) Raf.; Garcia et al., 2000]. These
crosses do not lend themselves easily to answering questions
about domestication genetics, but some conclusions can be
drawn from them. One clear pattern is the instability of the
majority of QTLs across years, which requires measurement of
the traits of interest across multiple seasons (e.g., Sharon et al.,
1998; Garcia et al., 2000; Casasoli et al., 2004; Quilot et al., 2004;
Cabezas et al., 2006; Kenis et al., 2008; Zhang et al., 2010).
One extreme example of this pattern is from a 15-yr mapping
project in cacao, where only two of 10 QTLs contributing to
yield were detected in more than 3 years (Crouzillat et al.,
2000). The other pattern seems to be that, while QTLs that ex-
plain over 20% of the phenotypic variation have been docu-
mented, the majority of the QTLs detected have a smaller ef-
fect. Whether this is due to the nature of these crosses (i.e., two
apple cultivars might not harbor highly divergent alleles for
fruit size) or due to a real difference in the nature of tree domes-
tication compared to annual plant domestication remains to be
seen. Overall, in spite of their limited utility for answering
questions about domestication, these existing studies show that
QTL mapping is a viable approach to understanding the genetic
basis of traits of interest in perennial crops.

To our knowledge, there are very few QTL mapping studies
that involve a cross between a cultivated tree and a wild relative
or a cross between a classical and modern cultivar. The studies
involving crop X wild crosses were both conducted in Prunus,
one utilizing an F, cross in sweet cherry (Zhang et al., 2010)
and one utilizing a BC, cross in peach (P. persica X P. davidi-
ana;, Quilot et al., 2004). Interestingly, the BC, cross was origi-
nally developed for the evaluation of disease resistance
characters, and only later co-opted for the evaluation of fruit
traits, suggesting that mapping-ready populations might exist
for other crops as well. The results were strikingly different: the
majority of QTLs detected in the cherry study were of major
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effect, while the majority detected in the peach study were of
minor effect. The cross between a classical and modern cultivar
was conducted in grape and was specifically aimed at identify-
ing the genetic basis of seedlessness (Cabezas et al., 2006). This
study was similar to the cherry study in that it identified many
QTLs of major effect, potentially an example of the identifica-
tion and preservation of a major mutation in a clonal crop, but
this observation should be tempered by the fact that only three
traits were measured.

Admixture mapping is another approach to mapping the loci
underlying traits of interest, with the major difference being
that admixture mapping takes advantage of a naturally occur-
ring recombinant population (Buerkle and Lexer, 2008). An
admixed population could be an interspecific hybrid zone or a
more subtle mixture of genetically differentiated populations
within the same species. This technique has been applied in
cacao, using cultivated varieties that are admixtures of the Criollo
and Forastero cacao cultivars, that are estimated to have under-
gone about six or seven generations of recombination (Marcano
et al., 2007, 2009). Admixture mapping in this system recov-
ered many QTLs that were documented in artificial mapping
populations, indicating its reliability. This technique has not yet
been applied to answer questions about domestication genetics
in perennial fruit crops, but it would be a very powerful technique
if the appropriate crop X wild admixed populations exist.

Domestication genes—QTL and admixture mapping studies
are often seen as the first steps toward map-based (or positional)
cloning, and the majority of domestication genes examined in
annual plants have been cloned using this technique (Doebley
et al., 2006). However, map-based cloning requires large popu-
lations (>1000) to narrow the region of interest to a reasonable size,
which is not a viable possibility in many perennials (Gonzélez-
Martinez et al., 2006b). Instead, candidate genes, either those
cloned in other species or those predicted to control relevant
traits based on nucleotide sequence, may be called on to play an
important role in understanding the genetic basis of domestica-
tion. For example, a study of candidate genes for anthocyanin
production using functional and population genetics led to the
discovery that the clustered genes VVMYBAI and VvMYBA?2 are
inactivated, via a variety of mechanisms, in white grapes
(Kobayashi et al., 2004; Walker et al., 2006, 2007; Y akushiji et al.,
2006; Azuma et al., 2009; Pelsy, 2010). Similarly, MdMADS?2.1
(similar to the Arabidopsis gene FRUITFULL) is associated
with apple fruit firmness within domesticated apples (Cevik et al.,
2010); this type of analysis could be extended to elucidate the
differences between wild and domesticated apples as well.

It is possible that perennial fruit crops will mainly skip the
laborious map-based cloning phase of identifying domestica-
tion genes. Genome sequencing projects for fruit trees are in-
creasing in number (e.g., Velasco et al., 2010), and publically
available candidate gene maps (e.g., Illa et al., 2010) will also
provide resources for linking genes to phenotypes, especially in
combination with genome-wide scans for selection and associa-
tion mapping techniques similar to those used in forest trees.
These candidate gene approaches are necessary, but will likely
face some stumbling blocks, as the domestication genes se-
quenced to date have generally proven to be uniquely important
in each species (Gross and Olsen, 2010).

Conclusions—Perennial crops are attracting increasing at-
tention as important components of sustainable agriculture, of-
fering promising options for food sources while lowering
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environmental impacts. Long-lived perennials share several
features that distinguish them from annual plants and influence
the way in which they evolve in nature and under domestica-
tion, including long juvenile phases, mechanisms to avoid self-
ing, high rates of inter- and intraspecific hybridization, extensive
population genetic variation, and limited population structure.
Perennial fruit crops have been domesticated in every major
agricultural center and, in some ways have responded to artifi-
cial selection just like annuals (e.g., novel fruit features, larger
fruit size, indehiscent fruit, larger seeds that are less toxic, fewer
defensive structures). However, unlike annuals, perennial fruit
crops are often clonally propagated, which has resulted in con-
comitant changes in reproductive biology. Domestication of
perennial fruit crops is characterized by a relatively broad ge-
netic bottleneck resulting from a combination of factors includ-
ing mating system, mode of reproduction, multiple geographic
origins of cultivated populations, and hybridization. Studies of
the genetic basis of domestication traits in perennial fruit crops
are in their infancy, but indicate that QTL underlying traits of
interest can be of major or minor effect, and may not be stable
across years. Future studies that take advantage of developing
genomic approaches and consider demographic history (e.g.,
Siol et al., 2010) will shed light on the genetic basis of agricul-
turally and ecologically important traits in perennial fruit crops
and their wild relatives.
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