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The ability to predict spatial variation in streamflow at the watershed scale is essential to understanding
the potential impacts of projected climate change on aquatic systems in this century. However, problems
associated with single outlet-based model calibration and validation procedures can confound the pre-
diction of spatial variation in streamflow under future climate change scenarios. The goal of this study
is to calibrate and validate a distributed hydrologic model, the Soil and Water Assessment Tool (SWAT),
using distributed streamflow data (1978–2009), and to assess the potential impacts of climate change on
future streamflow (2051–2060 and 2086–2095) for the Rock River (RRW), Illinois River (IRW), Kaskaskia
River (KRW), and Wabash River (WRW) watersheds in the Midwestern United States, primarily in Illinois.
The potential impacts of climate change on future water resources are assessed using SWAT streamflow
simulations driven by projections from nine global climate models (GCMs) under a maximum of three
SRES scenarios (A1B, A2, and B1). Results from model validation indicate reasonable spatial and temporal
predictions of streamflow, suggesting that a multi-site calibration strategy is necessary to accurately pre-
dict spatial variation in watershed hydrology. Compared with past streamflow records, predicted future
streamflow based on climate change scenarios will tend to increase in the winter but decrease in the
summer. According to 26 GCM projections, annual streamflows from 2051 – 2060 (2086–2095) are pro-
jected to decrease up to 45.2% (61.3%), 48.7% (49.8%), 48.7% (56.6%), and 41.1% (44.6%) in the RRW, IRW,
KRW, and WRW, respectively. In addition, under the projected changes in climate, intra- and inter-annual
streamflow variability generally does not increase over time. Results suggest that increased temperature
could change the rate of evapotranspiration and the form of precipitation, subsequently influencing
monthly streamflow patterns. Moreover, the spatially varying pattern of streamflow variability under
future climate conditions suggests different buffering capabilities among regions. As such, regionally spe-
cific management strategies are necessary to mitigate the potential impacts of climate change and pre-
serve aquatic ecosystems and water resources.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

The services provided by aquatic systems are fundamentally
important to humans. In addition to providing clean water for con-
sumption and agriculture, aquatic ecosystems sustain biodiversity
and provide support for basic ecological processes as well as
important economic activities, including fisheries and recreation.
Nevertheless, aquatic systems are heavily impacted by human
activities including land use changes associated with agriculture
and urbanization, as well as physical modification to river channels
which result in altered flow regimes (Miltner et al., 2004; Paul
et al., 2006; Sullivan et al., 2006). In addition, the Earth’s climate
is predicted to exhibit significant changes in temperature and pre-
cipitation during this century due to human activities (Hansen
et al., 2006). These expected climatic changes have been detected
and already have resulted in measurable impacts on the physical
environment (IPCC, 2007).

Increased temperature is the most commonly identified issue
regarding predicted changes in climate during the coming century,
and the potential impacts of this warming have received the
majority of attention (IPCC, 2007). Changes in precipitation
patterns are anticipated to be a significant component of climate
change as well. Modifications of precipitation patterns including
the changes in the magnitude and temporal variability of annual
precipitation may result in relatively intense rainfall
concentrated during particular times of the year (Kattenberg
et al., 1996). Changes in precipitation, in combination with
increases in temperature, can have dramatic effects on the
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hydrology of aquatic systems, subsequently impacting water re-
sources as well as the aquatic taxa which are adapted to particular
flow regimes (Poff et al., 1997).

Accurate information on the spatial variation in streamflow
and the assessment of the potential impacts of climate change
on future streamflow regimes are critical for water resource man-
agement, particularly in the context of water quantity, quality,
and aquatic ecosystem sustainability. The coupling of hydrologic
models with global climate models (GCMs) makes the assessment
of climate change impacts on water resources possible. Previous
studies have examined the impacts of future climate projections
downscaled from GCM simulations on water resources (Cher-
kauer and Sinha, 2010; Hay et al., 2011; Jha et al., 2006, 2004;
Kang and Ramirez, 2007; Lettenmaier et al., 1999; Nijssen et al.,
2001; Takle et al., 2005). However, most of these studies have fo-
cused on the change in the overall water budget rather than the
spatial and temporal changes in streamflow variability. Stream-
flow magnitude and variability are both essential variables influ-
encing the survival, growth, and reproduction of aquatic species,
and the directional alteration of these variables can impact local
community structure and cause populations to decline (Bain
et al., 1988).

Hydrologic models used to predict future water resources under
projected warming should accurately reproduce observed stream-
flow through calibration (Duan et al., 1993; Gupta et al., 1998;
Sivapalan et al., 2003; Wagener et al., 2007). A significant challenge
in calibration is the identification of appropriate model parameters
for distributed hydrologic models. In contrast to lumped models,
distributed models account for watershed spatial heterogeneity
by using a relatively larger number of parameters. However, not
all parameters are measureable because the scale of measurement
is usually smaller than the effective scale at which the parameters
are applied (Beven, 2001b).

When models are comprised of a relatively large number of
parameters, the issue of equifinality is a major concern (Beven,
1993, 2001a; Lo et al., 2010, 2008). That is, multiple sets of param-
eter combinations can yield similar results. Moreover, distributed
hydrologic models can potentially amplify the problems associated
with parameter estimations if spatially distributed data are
unavailable for calibration. In this case, model calibration usually
relies on measured hydrologic responses at a single watershed out-
let (Githui et al., 2009; Rouhani et al., 2007; Zhan et al., 2006), such
that the phenomenon of ‘‘predicting the correct result for the
wrong reasons’’ may occur (Jetten et al., 2003). Though distributed
hydrologic models are widely used, there are still very few exten-
sive calibration and validation studies against distributed ground
measurements in both water quantity and quality modeling (Bev-
en, 2002). To reduce the possibility of apparently accurate simula-
tions at the watershed outlet resulting from a combination of
locally inaccurate simulations, multi-site calibration within a wa-
tershed is recommended (Gul and Rosbjerg, 2010; White and
Chaubey, 2005; Zhang et al., 2010).

The goal of this study is to predict spatial variation of stream-
flow and assess the potential impact of climate change on stream-
flow in watersheds located primarily in Illinois in the Midwestern
United States. A distributed hydrologic model, the Soil and Water
Assessment Tool (SWAT) (Arnold et al., 1998), was calibrated and
validated with measured streamflow from multiple gauged sites.
The Sequential Uncertainty Fitting Algorithm (SUFI-2) (Abbaspour
et al., 2004, 2007) was used for model calibration, validation, and
uncertainty analysis. After the SWAT model was calibrated and
validated, 26 biased-corrected and spatially downscaled future
climate projections derived from nine GCMs were used to drive
the validated SWAT model in order to assess the potential im-
pacts of climate change on water resources in the studied
watersheds.
2. Materials and methods

2.1. SWAT hydrologic model

SWAT is a physically-based and distributed hydrologic model
developed to predict the impacts of changes in landscape manage-
ment practices on water, sediment, and agricultural chemical
yields (Arnold et al., 1998). In addition, SWAT is capable of assess-
ing the impacts of climate change on hydrologic responses and
agricultural activities by adjusting climatic variables based on fu-
ture projections (Arnold and Fohrer, 2005; Neitsch et al.,
2005a,b). SWAT typically operates on a daily time step for long-
term simulations at large watershed scales. SWAT accounts for
spatial heterogeneities by first dividing a large watershed into sev-
eral sub-basins, and then further dividing the sub-basins into mul-
tiple hydrologic response units (HRUs). Each HRU is a combination
of unique soil, land cover and management strategies. The simu-
lated water quantity and quality from each sub-basin are routed
by streamflow and distributed to the watershed outlet. For a more
detailed description of SWAT, see Neitsch et al. (2005b).
2.2. Calibration and uncertainty analysis using SUFI-2

Due to the processes resulting in equifinality (Beven and Binley,
1992), it is difficult to manually calibrate a distributed model in
which there are numerous parameters influencing the simulated
hydrologic response. The SUFI-2 algorithm was used to assist mod-
el calibration, validation and uncertainty analysis (Abbaspour et al.,
2004, 2007). Compared with similar techniques such as the Gener-
alized Likelihood Uncertainty Estimation (GLUE) (Beven and Bin-
ley, 1992), Parameter Solution (ParaSol) (van Griensven and
Meixner, 2006), and Bayesian inference methods (Kuczera and Par-
ent, 1998), SUFI-2 requires fewer simulations to achieve a similar
level of performance (Yang et al., 2008). Instead of identifying
absolute parameter values, the characterization of parameter
ranges is more important (Bardossy and Singh, 2008). Starting with
the initial parameter ranges, SUFI-2 is capable of generating differ-
ent parameter combinations, comparing simulations with observa-
tions, and identifying the optimal parameter ranges. Moreover,
instead of calibrating model parameters based on hydrologic re-
sponses from a single watershed outlet, SUFI-2 is able to simulta-
neously calibrate parameters based on distributed data within a
watershed. Hydrologic models cannot avoid uncertainties originat-
ing from input data, parameters, and model structures (Abbaspour
et al., 2007; Dillah and Protopapas, 2000; Dubus and Brown, 2002;
Leenhardt, 1995; Zhang et al., 1993). However, SUFI-2 maps all
uncertainties onto the parameter ranges and quantifies overall
uncertainty in the output of hydrologic response using a 95% pre-
diction uncertainty (95PPU), which, in this study, was calculated at
the 2.5% and 97.5% levels of the cumulative distribution of an out-
put variable obtained through the Latin hypercube sampling tech-
nique (Abbaspour et al., 2007). Moreover, SUFI-2 quantifies the
uncertainties using P-factor and R-factor statistics. P-factor is the
percentage of measured data falling into the 95PPU confidence
interval, whereas R-factor is the average breadth of the 95PPU band
divided by the standard deviation of measured data. The goal of
SUFI-2 is to include the majority of measured data with the small-
est possible uncertainty bands.
2.3. Study area and data

The study area consists of four watersheds: the Rock River wa-
tershed (RRW), Illinois River watershed (IRW), Kaskaskia River wa-
tershed (KRW), and Wabash River watershed (WRW) (Fig. 1). All
four watersheds are located east of the Mississippi River, primarily



Fig. 1. Map of the study area indicating the locations of the climate and streamflow observation stations in the Illinois River, Kaskaskia River, Rock River, and Wabash River
watersheds.
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cover portions of Illinois, Wisconsin, and Indiana, and drain a total
area of 206,928 km2 (Table 1). The watershed outlets of RRW, IRW,
and KRW are located at confluences with the Mississippi River,
while the WRW outlet is located at the confluence of the Wabash
River and the Ohio River. Dominant soils in Illinois typically have
silt loam and silt clay loam textures (Eltahir and Yeh, 1999; Yeh
et al., 1998). More information on the Illinois hydrometeorology
can be found in Yeh and Famiglietti (2008, 2009).
Table 1
Watershed information including the number of precipitation weather stations, temperatu

Drainage area Number of Number o

Acronym (km2) Prec stations Temp stat

Rock River watershed RRW 28401.02 33 28
Illinois River watershed IRW 72985.53 78 55
Kaskaskia River watershed KRW 15418.76 29 18
Wabash River watershed WRW 90123.05 83 58

Prec: precipitation; Temp: temperature.
Streamflow data measured from United States Geological Sur-
vey (USGS) gauging stations were used for SWAT calibration and
validation. Average monthly streamflow data recorded from 1975
to 2009 were available from 100 USGS gauging stations distributed
within these four watersheds (Fig. 1). Three Geographic Informa-
tion System (GIS) data layers were used to parameterize SWAT: a
gridded 30 m digital elevation model (DEM) (NED, 2000), a
1:250,000 digital soil dataset from the State Soil Geographic
re weather stations, calibration stream gauge stations, drainage area, and land use.

f Number of Land use above the watershed outlet (%)

ions Calibration stations Agriculture Forest Urban Water Others

14 75.41 8.42 9.64 5.31 1.22
41 71.33 12.14 12.49 2.73 1.31
20 70.54 16.16 9.10 3.64 0.56
25 68.54 18.94 9.32 1.85 1.35
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(STATSGO2) database (NRCS, 2006), and a land use map based on
the National Land Cover Dataset (Homer et al., 2004). All GIS data
were downloaded from the United States Department of Agriculture
(USDA) geospatial data gateway (http://datagateway.nrcs.usda.gov/).
2.4. Climate data

SWAT requires daily climate data, including precipitation, max-
imum air temperature, minimum air temperature, solar radiation,
wind speed, and relative humidity to drive the water balance mod-
el. When observed climate data are not available, the stochastic
weather generator model within SWAT can simulate daily weather
data or fill in gaps of missing data based on average monthly cli-
mate statistics from neighboring stations (Sharpley and Williams,
1990). In this study, climate data from four sources, (1) observed
climate data from the National Weather Service (NWS) weather
stations (OBSNWS) from 1975 to 2009 (http://lwf.ncdc.noaa.gov/
oa/ncdc.html), (2) gridded observed climate data compiled by the
Variable Infiltration Capacity (VIC) group (OBSVIC) from 1975 to
1999, (3) climate data from various GCMs from 1975 to 1999,
and (4) future climate data from various GCMs from 2046 to
2065 and 2081 to 2100, were used to drive SWAT (Fig. 2). OBSNWS

from 1975 to 2009, including daily precipitation and minimum and
maximum air temperature, were obtained from 223 precipitation
stations and 159 temperature stations from the NWS (Fig. 1), and
were input into SWAT to drive the streamflow simulations for cal-
ibration and validation. The other necessary climate variables were
simulated by the SWAT weather generator. Nine global climate
projections obtained from the online archive ‘‘Bias Corrected and
Downscaled WCRP (World Climate Research Programme’s) CMIP3
(Coupled Model Intercomparison Project phase 3) Climate Projec-
tions’’ (Maurer et al., 2010) were used for future SWAT model pre-
dictions (Appendix A). A gridded climate dataset (OBSVIC)
representing 20th century surface climate conditions based on
observations and complied by the Variable Infiltration Capacity
group (Maurer et al., 2002) was used to correct the bias of a given
GCM’s simulation of the 20th century climate (GCM20c3m). The ba-
sis for bias-correction was developed by focusing on datasets of
OBSVIC and GCM20c3m at a 2� spatial resolution. The bias-correction
was then applied to the GCM future climate projections datasets.
Downscaling spatially translated bias-corrected GCM projections
Fig. 2. Schematic diagram of SWAT simulation runs with various climate data sources inc
observed climate data compiled by the variable infiltration capacity (VIC) group; (3) cu
GCM. Measured streamflow from 1978 to 1999 (Qobs1) and 2000–2009 (Qobs2) were use
(1961–2000, 2046–2065, 2081–2100) data from climate models
at a 2� spatial resolution to a 1/8� resolution is more relevant to
watershed-scale hydrologic modeling (Hidalgo et al., 2008; Maurer
and Hidalgo, 2008; Maurer et al., 2010), thereby providing approx-
imately 184, 434, 94, and 529 grid points within the RRW, IRW,
KRW, and WRW, respectively. Analysis of GCM predictions also
indicated that a bias in precipitation estimates from 2046 to
2065 and from 2081 to 2100 occurred during the downscaling pro-
cess, which resulted in an underestimation of precipitation in
watersheds in this study. We corrected the precipitation bias intro-
duced from spatial downscaling by calculating a simple multiplica-
tive scaling of average monthly precipitation for each grid between
OBSVIC and GCM20c3m, and applying the multiplicative scaling to
each grid of downscaled GCM precipitation data from 2046 to
2065 and 2081 to 2100. A simple multiplicative scaling of average
monthly precipitation was calculated as:

Pi ¼
Pi OBSVIC

Pi GCM20c3m
; i ¼ 1;2; . . . 12 ð1Þ

where Pi is a multiplicative scaling of average monthly precipitation
for each month i from 1975 to 1999, Pi_OBSVIC and Pi_GCM20c3m are
individual average monthly precipitation estimates for 1975–1999
from OBSVIC and GCM20c3m, respectively.Each GCM, except GCM8,
is represented by three scenarios for future greenhouse gas emis-
sions as defined in the IPCC Special Report on Emissions Scenarios
(SRESs) (Nakicenovic and Swart, 2000). These three scenarios in-
clude SRES A2 (higher emissions path), SRES A1B: (middle emis-
sions path), and SRES B1 (lower emissions path). GCM8 only
includes the A2 and B1 scenarios (Appendix A).

2.5. Model setup and statistical analysis

The SWAT ArcGIS (version 9.3) interface (Neitsch et al., 2005a,b)
was used to write SWAT input files from the DEM, soil, and land
use GIS data layers. There were 303, 805, 169, and 902 sub-basins
delineated in RRW, IRW, KRW, and WRW, respectively. In order to
reduce computational burden in large watersheds, the dominant
soil type and land use were characterized in each sub-basin. The
workflow of SWAT simulation runs with various past and future
climate datasets are displayed in Fig. 2. Climate data from OBSNWS

including daily precipitation, maximum air temperature, and
luding: (1) observed climate data from National Weather Service (NWS); (2) gridded
rrent climate data (20c3m) from each GCM; and (4) future climate data from each
d for calibration and validation, respectively.



Table 2
Initial and final parameter ranges for SWAT calibration and parameter significance.

RRW IRW KRW WRW
Parameters Initial Range Final Range Final Range Final Range Final Range

min max min max P-value min max P-value min max P-value min max P-value

CN2* �0.20 0.20 �0.11 �0.01 0.00 �0.01 0.10 0.00 �0.13 �0.02 0.00 �0.04 0.03 0.00
ESCO 0.80 1.00 0.83 0.89 0.01 0.88 0.95 0.00 0.96 1.04 0.00 0.88 0.96 0.00
RCHRG_DP 0.00 1.00 0.18 0.38 0.00 0.18 0.61 0.00 0.25 0.68 0.00 0.21 0.55 0.00
EPCO 0.01 1.00 0.00 0.67 0.00 0.13 0.71 0.00 �0.08 0.64 0.00 0.37 1.09 0.00
ALPHA_BNK 0.00 1.00 0.24 0.44 0.00 0.80 1.10 0.00 0.48 0.67 0.00 0.39 0.67 0.90
SMTMP �5.00 5.00 �1.40 5.82 0.00 �1.59 5.25 0.00 �1.98 4.08 0.00 �3.54 2.16 0.23
SOL_AWC(1)* �0.20 0.40 �0.24 �0.05 0.40 �0.11 0.16 0.16 0.29 0.40 0.00 �0.26 0.05 0.00
SFTMP �5.00 5.00 �1.63 0.80 0.06 �3.70 1.10 0.00 �1.65 0.63 0.01 0.70 3.34 0.08
SURLAG 0.00 15.00 3.33 7.42 0.03 �4.50 1.13 0.00 8.94 15.78 0.44 9.64 14.56 0.51
CH_K2 5.00 130.00 5.83 51.24 0.00 72.84 123.88 0.71 120.25 157.23 0.57 10.79 43.77 0.98
GWQMN 0.00 2.00 1.38 2.19 0.70 �0.35 0.53 0.93 0.31 0.69 0.85 �1.16 �0.29 0.04
SOL_K(1)* �0.80 0.80 0.59 1.37 0.72 0.11 0.71 0.36 0.04 0.48 0.99 �1.35 �0.60 0.01
ALPHA_BF 0.00 1.00 0.43 0.70 0.36 0.29 0.78 0.33 0.15 0.30 0.97 0.47 0.91 0.75
GW_DELAY 30.00 300.00 107.00 137.07 0.70 �157.35 �1.14 0.05 �103.89 2.23 0.18 �92.14 105.25 0.78
GW_REVAP 0.00 0.20 0.15 0.19 0.50 0.01 0.08 0.76 0.10 0.17 0.04 0.10 0.14 0.10
CH_N2 0.00 0.30 0.13 0.20 0.43 0.11 0.20 0.43 0.31 0.41 0.22 0.15 0.30 0.17
SOL_BD(1)* �0.50 0.60 0.03 0.33 0.11 0.16 0.80 0.12 �0.18 �0.03 0.20 0.23 0.96 0.66
TIMP 0.01 1.00 0.39 0.56 0.82 0.39 0.63 0.58 0.73 0.97 0.49 �0.10 0.58 0.48
REVAPMN 0.00 300.00 �81.18 172.98 0.16 139.92 419.88 0.84 71.82 223.98 0.62 75.72 227.28 0.19
OV_N 0.00 0.50 0.02 0.34 0.54 0.02 0.34 0.63 0.11 0.37 0.67 �0.04 0.32 0.42

CN2: SCS runoff curve number for moisture condition II.; ESCO: Soil evaporation compensation factor; RCHRG_DP: Deep aquifer percolation fraction; EPCO: Plant uptake
compensation factor; ALPHA_BNK: Baseflow alpha factor for bank storage (days); SMTMP: Snow melt base temperature (�C); SOL_AWC: Available water capacity of the soil
layer (mm); SFTMP: Snowfall temperature (�C); SURLAG: Surface runoff lag coefficient; CH_K2: Effective hydraulic conductivity in main channel alluvium (mm/hr).
GWQMN: Threshold depth of water in the shallow aquifer required for return flow to occur (mm); SOL_K: Saturated hydraulic conductivity (mm/hr); ALPHA_BF: Baseflow
alpha factor (days); GW_DELAY: Groundwater delay time (days); GW_REVAP: Groundwater ‘‘revap’’ coefficient; CH_N2: Manning’s ‘‘n’’ value for the main channel; SOL_BD:
Moist bulk density (Mg/m3); TIMP: Snow pack temperature lag factor; REVAPMN: Threshold depth of water in the shallow aquifer for ‘‘revap’’ or percolation to the deep
aquifer to occur (mm); OV_N: Manning’s ‘‘n’’ value for overland flow.
* Parameter value is multiplied by (1 + a given value).
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minimum air temperature from 1975 to 2009 were input to SWAT.
The first three years of simulations were used as a spin-up period
and excluded from the analysis. We chose a calibration period from
1978 to 1999 when the internal USGS gauge stations were simul-
taneously active. Streamflow data from 2000 to 2009 were used
for validation. Daily streamflow simulations from SWAT were
aggregated into monthly streamflow for calibration and validation.
No artificial reservoirs and ponds were included due to the lack of
discharge information. Reservoirs and ponds were treated as water
or wetlands in land use.

In SWAT, streamflow is the sum of surface runoff, interflow, and
base flow. Twenty parameters related to surface runoff, interflow
and base flow generation were chosen to calibrate against monthly
streamflow data from 100 USGS gauge stations (Table 2). Initial
parameter ranges for 20 variables were set up according to previ-
ous studies and the SWAT user guide (Faramarzi et al., 2009; Nei-
tsch et al., 2005a; Santhi et al., 2001; Schuol et al., 2008), and
applied to the four watersheds. We used SUFI-2 to generate 1000
parameter combinations for each iteration, ran SWAT with the
parameter combinations, calculated the goodness-of-fit and uncer-
tainty measures, and generated the new parameter ranges. SWAT
was independently calibrated against measured streamflow three
times for each of the four watersheds to obtain updated parameter
ranges. After five iterations, the final parameter ranges were used
for validation. A 10% error estimate was included to account for
the uncertainty in the measured discharge data (Butts et al.,
2004). The goodness-of-fit of model simulation and prediction
capability was evaluated using the Nash–Sutcliffe coefficient (E)
(Nash and Sutcliffe, 1970) and the coefficient of determination (R2).

In the course of the iterative SUFI-2 calibration, the best set of
parameters from the last iteration was obtained at the maximum
average E of the calibration stations. This set of parameters was
subsequently used in SWAT to assess the errors of a given pro-
jected climate model and to predict future streamflow in response
to climate change. Daily precipitation and maximum and mini-
mum air temperature in two 20-year periods (2046–2065 and
2081–2100) from nine GCMs (26 simulations) were input to SWAT.
We quantified the predicted streamflow and its variability from
two 10-year periods (2051 to 2060 and 2086 to 2095). When com-
paring past and future climate variables and streamflow, the 10-
year period from 1990 to 1999 was used because both OBSVIC

and GCM20c3m have the most recent climate in 1999. The change
in future predicted streamflows were assessed based on simulated
streamflow from each GCM20c3m. Intra-annual variability of pre-
dicted streamflow was quantified as the coefficient of variation
(CV) and calculated as:

CVs intra ¼
1
N

XN

i¼1

STDðQmÞ
Q m

� �
i

ð2Þ

where Qm is monthly streamflow, STD(Qm) and Qm are the standard
deviation and the mean of monthly streamflow in a year, and i is the
year number. CVs_intra is the N-year mean of CV for a sub-basin.
N = 10 in this study.

For each sub-basin, inter-annual stremflow variability was cal-
culated as:

CVs inter ¼
STDðQyÞ

Q y

ð3Þ

where Qy is annual streamflow, STD(Qy) and Qy are the standard
deviation and the mean of annual streamflow. In this study, 10-year
inter-annual streamflow variability for the periods 1990–1999,
2051–2060, and 2086–2095 were analyzed. Overall, the intra- and
inter-annual streamflow variability is the mean of CVs_intra and
CVs_inter from all sub-basins within the study watersheds.

Errors in the past and future streamflow predictions may origi-
nate from the SWAT model, observed climate data, and future cli-
mate datasets simulated by GCMs. Evaluation of these errors is
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made by comparing SWAT simulations with measured streamflow
records (Jha et al., 2004). The possible error sources from SWAT
and the climate datasets are listed in Table 3. The magnitude of
the errors was evaluated by calculating the following bias and root
mean square error (RMSE):

Bias ¼ 1
N

XN

i¼1

Q s i � Q m ið Þ ð4Þ
RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN

i¼1

ðQ s i � Q m iÞ2
vuut ð5Þ

where Qm and Qs are the measured and simulated streamflow on
month i, respectively, and N is the number of years of streamflow
data. The bias provides a measure of annual mean error between
simulations and observations. The RMSE gives an estimate of the
variability between model simulations and observations, which is
used to assess the validity of the model in reproducing the seasonal
cycle. Errors were evaluated using observed and simulated stream-
flow from the following stream gauges: Rock River near Joslin, IL
(USGS 05446500), Illinois River at Valley City, IL (USGS
05586100), Kaskaskia River near Venedy station, IL (USGS
05594100), and Wabash River at Mt. Carmel, IL (USGS 03377500).
3. Results

3.1. Parameter ranges during calibration

For each watershed, although the initial parameter ranges are
identical, the optimal parameter ranges from calibration are differ-
ent (Table 2). For example, the initial range of CN2 (SCS runoff
curve number for moisture condition II) is �0.2 to 0.2 for all water-
sheds, but the final range is �0.11 to �0.01, �0.01 to 0.10, �0.13 to
�0.02 and �0.04 to 0.03 for RRW, IRW, KRW and WRW, respec-
tively (Table 2). Similar results are found for other parameters (Ta-
ble 2). Not all of the 20 parameters are consistently important for
the accurate simulation of streamflow among watersheds, only the
following four parameters are found to be sensitive in all four
watersheds: CN2, ESCO (soil evaporation compensation factor),
RCHRG_DP (deep aquifer percolation fraction), and EPCO (plant up-
take compensation factor).

3.2. SWAT calibration and validation

Simulated monthly total streamflow from SWAT is in reason-
able agreement with the measurements from the 100 USGS gauge
stations (Fig. 3). During the calibration, the R2 of 90% of the sta-
tions, as well as the coefficient E of 77% of the stations, exceeded
0.6. The number of stations with R2 and E over 0.6 decreases to
78% and 71%, respectively, during the validation period (Fig. 3).
More than 60% of the measurements bracketed within the 95PPU
are found at 80% of the stations during calibration and 47% during
validation. The R-factor is below 0.8 at 87% of the stations in the
calibration, while it decreases to 57% of the stations during valida-
tion (Fig. 4).
Table 3
The sources of error in simulated streamflow from SWAT and climate models.*

Comparisons Error source

1 Qsim1 versus Qobs1 OBSNWS + SWAT
2 Qsim3 versus Qobs1 OBSVIC + SWAT
3 Qsim4 versus Qsim3 GCM
4 Qsim5 versus Qsim4 Climate change

* Qsim and Qobs are simulated and observed streamflows represented in Fig. 2.
Generally, SWAT accurately reproduces long-term mean sea-
sonality and month-to-month variability of hydrologic responses
as well as short-term dynamics of individual events, as indicated
by the optimal E of 0.53, 0.78, 0.75, and 0.76 during the calibration
period for the RRW, IRW, KRW and WRW, respectively. According
to the parameter ranges obtained from the calibration process of
SWAT, predicted streamflow during the validation period exhibits
a reasonable reproduction of the dynamics of the observed stream-
flow during events and between events (Fig. 5). The optimal E val-
ues in the validation period are 0.68, 0.71, 0.81, and 0.72 in the
RRW, IRW, KRW and WRW, respectively.

3.3. Predicted streamflow from 2051 to 2060 and 2086 to 2095

In order to evaluate the impact of climate change on the spatial
variability of streamflow, we first compared 1990–1999 climate
conditions from the OBSVIC and GCM20c3m data. Average annual
temperature from the OBSVIC dataset is well reproduced by the
nine GCM20c3m estimates. The maximum differences in mean tem-
perature between OBSVIC and GCM20c3m are 0.34 �C, 0.26 �C, 0.14 �C
and 0.26 �C in the RRW, IRW, KRW, and WRW, respectively. Annual
precipitation of OBSVIC was well matched by the nine GCM20c3m

estimates, with errors of approximately ±1%. The future mean tem-
perature in 2051–2060 and 2086–2095 increases in comparison
with the past mean temperature in 1990–1999. The mean temper-
ature differences between 26 GCM projections for 2051–2060
(2086–2095) and the 1990–1999 temperature are +3.05 �C
(+4.57 �C), +2.64 �C (+4.09 �C), +3.27 �C (+4.72 �C), and +3.22 �C
(+4.68 �C) in the RRW, IRW, KRW, and WRW, respectively. The per-
centage changes of annual precipitation from 1990–1999 to 2051–
2060 range from �17.98% to 7.25%, �22.98% to 6.91%, �27.58% to
�5.31%, and �18.64% to 7.73%, in the RRW, IRW, KRW, and WRW,
respectively. The percentage changes in annual precipitation from
1990–1999 to 2086–2095 range from �24.22% to 13.16%, �22.09%
to 15.48%, �33.09% to �0.08% and �21.02% to 16.17%, in the RRW,
IRW, KRW and WRW, respectively.

The SWAT-predicted monthly average streamflows produced by
the 26 GCM projections indicates a wide range of potential flow re-
gimes (Fig. 6). Generally, the simulated 2051–2060 and 2086–2095
streamflows from the 26 GCM projections converge during sum-
mer, but exhibit wider ranges during winter. For example, the
range of the projected 2051–2060 streamflows among GCM projec-
tions is 13.71 mm/month in August (maximum 15.77 mm/month
and minimum 2.07 mm/month), but increases to 42.28 mm/month
in December (maximum 55.17 mm/month and minimum
12.89 mm/month) (Fig. 6a, KRW). However, the relative changes
of projected streamflows during the summer do not represent
smaller percent ranges compared with 1990–1999 simulations
from each GCM20c3m. For example, the relative range of the pro-
jected 2051–2060 streamflow is from �80.28% to 57.69% in August
and from �64.11% to 94.10% in December (Fig. 6a, KRW). Overall
17, 17, 20, and 18 of 26 predicted annual streamflows in the
RRW, IRW, KRW, and WRW, respectively, are predicted to decrease
in 2051–2060 compared with the simulated streamflow from indi-
vidual GCM20c3m estimates. During 2086–2095, 18, 15, 20, and 16
of 26 predicted annual streamflows in RRW, IRW, KRW, and
WRW, respectively, are predicted to decrease relative to GCM20c3m

estimates. The annual streamflows for 2051–2060 (2086–2095) are
projected to decrease up to 45.2% (61.3%), 48.7% (49.8%), 48.7%
(56.6%), and 41.1% (44.6%) in RRW, IRW, KRW, and WRW, respec-
tively (Appendix B).

3.4. Intra-annual and inter-annual streamflow variability

The majority of simulations indicate that intra-annual and inter-
annual streamflow variability will decrease in the future (Table 4).



Fig. 3. The coefficient of determination (R2) for the (a) calibration and (b) validation as well as the Nash–Sutcliff coefficient for the (c) calibration and (d) validation calculated
at each of the 100 stream gauge stations.
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Spatially averaged intra-annual CV in 1990–1999 is 0.99, which is
higher than 21 of the 26 estimates of the intra-annual CV in
2086–2095. None of the intra-annual CV estimates in 2051–2060
are higher than the 1990–1999 measure. The spatially averaged in-
tra-annual CV for the 1990–1999 period using OBSNWS data is 0.71,
0.97, 1.18, and 1.10 in RRW, IRW, KRW, and WRW, respectively.
However, the CV for 2051–2060 (2086–2095) period decreases to
0.44 (0.48), 0.90 (0.97), 0.99 (1.07), and 0.86 (0.94) in RRW, IRW,
KRW, and WRW, respectively (Appendix C). Approximately 51% of
sub-basins have CV estimates greater than 1.0 during 1990–1999
(Fig. 7a). Under the highest CV from the 26 GCM projections,
approximately 51% of the sub-basins have intra-annual CV greater
than 1.0 during 2051–2060 (Fig. 7b). The percentage of sub-basins
with intra-annual CV estimates greater than 1.0 increases to 85% in
2081–2096 (Fig. 7c). The spatially averaged inter-annual stream-
flow CV is 0.43 during 1990–1999. Only two of the 26 inter-annual
streamflow CV estimates are larger than 0.43 during 2051–2060
and 2086–2095.
3.5. Uncertainty of model simulations

The levels of uncertainty of the SWAT streamflow simulations
were calculated by comparing the SWAT simulated streamflow
from OBSNWS, OBSVIC, and OBS20c3m (Table 5). A positive value of
bias indicates an overestimation of SWAT streamflow simulations,
while a negative value indicates an underestimation. The highest
percentage of biases is found for OBSNWS (�15.0%) and OBSVIC

(15.0%) (Table 5). The GCM3 exhibited the highest percentage of
biases with an average overprediction of contemporary streamflow
of 13.4%, 12.3%, 11.9%, and 13.7%, in the RRW, IRW, KRW, and
WRW, respectively (Table 5).

The measure of biases in GCM-based future streamflow predic-
tions is the difference between current and future streamflow sim-
ulations based on various GCM projection datasets (Jha et al.,
2004). Simulated streamflows from various future GCM estimates
generally exhibit a relatively higher percentage of bias compared
to comparisons between observed contemporary climate data



Fig. 4. P-factor scores derived from the (a) calibration and (b) validation of models at each of the 100 gauge stations as well as R-factor scores derived from the (c) calibration
and (d) validation of models at each of the 100 stream gauge stations.
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and GCM20c3m (Fig. 8). Predicted future streamflows based on var-
ious GCM3 projections (A2, A1B, B1) result in, on average, the high-
est percentage of absolute bias, ranging from 48% to 53% among
the four watersheds. However, the percentage of highest absolute
bias is approximately 61% from GCM6 in the RRW (Fig. 8). The
majority of future streamflow predictions based on GCM projec-
tions during the 2051–2060 and 2086–2095 periods indicate over-
all reductions in streamflow. However, a predicted increase in
streamflow is found when using the climate data projected by
GCMs 1, 2 and 9 (Fig. 8).
4. Discussion

4.1. SWAT calibration and validation

The simulated streamflows produced by SWAT are generally
consistent with observations from the four watersheds during
the calibration and validation periods. Only three of 100 gauge
stations have negative E values. The low goodness-of-fit between
observations and simulations could result from any combination
of errors from observed and simulated streamflow, climate data,
and/or geophysical GIS data including land use and soil maps.
However, the influence of poor simulations from these three sta-
tions declines with the distance downstream. When a poorly
simulated streamflow is routed downstream, the agreement be-
tween simulated and observed streamflow is expected to de-
crease due to error propagation (Abbaspour et al., 2007; Dillah
and Protopapas, 2000; Dubus and Brown, 2002; Leenhardt,
1995; Zhang et al., 1993). However, most E values in down-
stream stations remain between 0.6 and 1.0 in the four water-
sheds, suggesting error propagation is masked or the influence
of error from upstream stations with low goodness-of-fit esti-
mates is small. The results imply the existence of hydrologic er-
ror compensation (Cao et al., 2006), in which the combination of
poorly simulated streamflow from upstream sub-basins may
yield reasonable results at downstream sub-basin and watershed
outlets.



Fig. 5. Time series of observed and simulated monthly streamflow data generated during the validation period (2000–2009) at the (a) USGS 05446500 Rock River near Joslin,
Illinois stream gauge, (b) USGS 05586100 Illinois River at Valley City, Illinois stream gauge, (c) USGS 05594100 Kaskaskia River near Venedy, Illinois stream gauge, and (d)
USGS 03377500 Wabash River at Mt. Carmel, Illinois stream gauge.
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With more than 20-years of streamflow calibration data from
14, 41, 20, and 25 USGS gauge stations at RRW, IRW, KRW, and
WRW, respectively, streamflow simulations were validated at each
station in the four watersheds, and a general agreement with the
corresponding observations was found. The results suggest the
importance of multi-site calibration and validation when hydro-
logic responses across large watersheds are desired from model
simulations. Without the multi-site calibration and validation,
spatial variation within the watershed would be masked (Takken
et al., 1999), suggesting the importance of collecting spatially dis-
tributed data (when available) to conduct simultaneous multi-site
calibration (Zhang et al., 2008).

Physically-based parameters in hydrologic models can be di-
rectly measured in the field; however, complex hydrologic models
usually contain certain non-physically based parameters whose
values can be difficult to estimate. For example, none of the four



Fig. 6. Simulated streamflow using OBSVIC and GCM20c3m from 1990 to1999 (solid line) and simulated streamflow for: (a) 2051–2060, and (b) 2086–2095 from GCMs with A2
(red), A1B (green) and B1 (blue) scenarios in absolute values (top) and relative to simulations (bottom) in Rock River (RRW), Illinois River, (IRW), Kaskaskia River (KRW), and
Wabash River (WRW) watersheds. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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most sensitive parameters (CN2, ESCO, RCHRG_DP, and EPCO)
identified in this study are physically based. As a proxy of hydro-
logic processes, the results imply that water fluxes in surface,
groundwater, and evapotranspiration would be the primary prior-
ities for data collection for conducting multi-site calibration and
validation in relatively large watersheds.

4.2. Predicted streamflow

With 26 bias-corrected and downscaled climate projections for
the periods 2051–2060 and 2086–2095, our results suggest that
annual streamflow will likely decrease based on the majority of
GCM-based SWAT model simulations. However, the monthly
Table 4
The mean of intra-annual and inter-annual streamflow variability, quantified as coefficient
For periods 2051–2060 and 2086–2095, the highest, lowest and median CV is presented f

1990–1999 2051–2060

CV Highest_CV Lowest_CV

Intra-annual 0.9969 0.9925 0.6299
Inter-annual 0.4343 0.4943 0.1711
streamflow pattern is altered throughout the year. The results sug-
gest that streamflow will tend to increase in winter but decrease in
summer for both future time periods. The altered pattern of
monthly streamflow is more obvious in KRW and WRW, which
are located in the southern part of the study region. This altered
streamflow pattern is potentially driven by changes in the water
budget including alteration of evapotranspiration induced by
changes in precipitation and temperature. Warmer temperatures
may also play an additional role in the alteration of streamflow
patterns. When the temperature is warmer in winter, precipitation
more frequently falls as rain instead of snow, which could explain
why reduced precipitation in January and February can still result
in higher streamflow in the four watersheds.
of variation (CV), in the four watersheds for 1990–9999, 2051–2060, and 2086–2095.
rom 26 GCM projections.

2086–2095

Median_CV Highest_CV Lowest_CV Median_CV

0.8442 1.3204 0.7138 0.7523
0.3083 0.6397 0.2261 0.3029



Fig. 7. Coefficient of variation (CV) of the (a) 1990 to 1999, (b) 2051–2060 highest, and (c) 2086–2095 highest simulated intra-annual streamflow variability in each sub-
basin.

Table 5
Estimated errors from SWAT simulations based on observed (OBSNWS and OBSVIC) and GCM (GCM20c3m) climate data from 1990 to 1999.

Error GCM RCW IRW KRW WRW

Bias RMSE Bias RMSE Bias RMSE Bias RMSE

mm (%) mm mm (%) mm mm (%) mm mm (%) mm

OBSNWS + SWAT �21.8 (�7.4) 4.50 �55.9 (�15.0) 5.34 �6.3 (�2.1) 5.69 �5.2 (�1.4) 4.68
OBSVIC + SWAT 44.5 (15.0) 6.80 �0.5 (�0.1) 4.08 28.1 (9.2) 6.37 45.1 (12.0) 6.43
GCM20c3m GCM1 9.2 (2.7) 4.82 6.6 (1.8) 9.30 5.0 (1.5) 10.02 9.4 (2.2) 8.73

GCM2 �6.1 (�1.8) 5.25 �29.3 (�7.9) 9.89 �34.5 (�10.3) 9.96 �12 (�2.9) 7.81
GCM3 45.6 (13.4) 6.02 45.8 (12.3) 7.31 39.9 (11.9) 7.82 57.6 (13.7) 7.57
GCM4 5.9 (1.8) 4.46 14.5 (3.9) 8.17 23.6 (7.1) 9.45 24.3 (5.8) 6.96
GCM5 �13.1 (�3.8) 5.27 �15.9 (�4.3) 9.14 �12.5 (�3.5) 6.88 �3.8 (�0.9) 8.18
GCM6 �11.5 (�3.4) 4.79 �24.7 (�6.6) 7.74 �13.5 (�4.2) 6.95 �18 (�4.3) 6.38
GCM7 �5.6(�1.6) 6.20 �3.6 (�0.8) 11.55 5.1 (1.5) 10.11 11.5 (2.7) 9.79
GCM8 4.6 (1.3) 3.65 4.2 (1.1) 7.41 �1.7 (�0.5) 10.02 4.3 (1.0) 7.86
GCM9 �18.4 (�5.4) 5.32 �26.3 (�7.1) 8.88 �9.3 (�2.8) 9.32 �14.5 (�3.4) 8.09
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Precipitation is predicted to be relatively high in July and Au-
gust by most GCM projections; however, the streamflow is pre-
dicted to be relatively low in these two months. This result
suggests that the annual streamflow may be dominated by precip-
itation, but warmer temperatures could change the rate of evapo-
transpiration, subsequently influencing monthly streamflow
patterns (Islam et al., 2012). Previous studies have indicated simi-
lar relationships between rising air temperature and decreased
streamflow (Chen et al., 2007; Hawkins and Austin, 2012; Najjar
et al., 2010; Tang et al., 2012).

4.3. Streamflow variability

Our results indicate that the majority of simulated streamflow
from the 26 GCM projections from 2051 – 2060 and from 2086
to 2095 exhibit lower variability in terms of intra- and inter-annual



Fig. 8. Bias percentage of predicted streamflow from 2051 to 2060 and 2086 to 2095 in comparison to simulated streamflow from GCM20c3m.
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CV compared with that during 1990–1999. Streamflow variability
is primarily influenced by factors including frequency and magni-
tude of precipitation and land use and land cover characteristics
(Chang et al., 2012; Nippgen et al., 2011). In this study, land use
and land cover were not changed during SWAT simulations for
periods 1990–1999, to 2051–2060 and 2086–2095, which limits
changes in climate as the primary factor influencing changes in
streamflow variability.

The analyses of streamflow variability (CV) suggests that dif-
ferent regions have different buffering capabilities in response to
potential climate change scenarios (Hay et al., 2011; Roots,
1989). A plausible explanation is that the hydrologic response
in a given watershed may be dominated by different hydrologic
processes (Grayson and Blöschl, 2000; Sivakumar, 2004, 2008).
Previous studies indicate that total rainfall, rainfall intensity,
and soil water are dominant variables driving hydrologic pro-
cesses in agricultural watersheds (Houser et al., 2000). Tempera-
ture is the dominant variable for stream discharge in middle- to
high-latitude watersheds where snow tends to accumulate dur-
ing the winter (Liu et al., 2007; Nijssen et al., 2001). With cli-
mate change, in terms of increased temperature and altered
precipitation patterns, the response to climate change in snow-
covered areas may be more severe than in warmer regions be-
cause of extreme hydrologic events associated with snowmelt.
The increased temperature would result in relatively greater
changes in snowmelt in winter or earlier spring and subse-
quently cause more soil moisture to evaporate. Even within
the same watershed, different land-use types may differentially
influence the hydrologic response to climate change. For exam-
ple, forests (as opposed to agricultural landscapes) could better
mitigate the impact of intense precipitation by limiting the
amount of soil erosion from the land surface (Nearing et al.,
2005; Schiettecatte et al., 2008). The results from this study sug-
gest that different strategies are likely required in different re-
gions in response to anticipated climate change.
4.4. Uncertainties in climate change impact

Climate data from OBSVIC were compiled from the National
Weather Service COOP database. Maurer et al. (2002) developed
the OBSVIC according to the daily precipitation and maximum
and minimum temperature of OBSNWC and gridded these data
into a 1/8� spatial resolution using the synergraphic mapping
system algorithm. The uncertainty of SWAT simulations com-
bined with that of OBSNWS or OBSVIC provides a threshold that
can be compared to uncertainties arising from using different
GCM climate projection data. The bias percentage from SWAT
combined with OBSNWS or OBSVIC is estimated to be between
±15%, which suggests uncertainties from GCM initial conditions
(GCM20c3m) are reasonable. However, the bias percentage from
most of the 26 GCM projections is greater than ±15% (Fig. 8).
These results suggest dramatic changes in streamflow in the fu-
ture, with most cases indicating reductions in streamflow. In
addition, the variability among future streamflow predictions im-
plies that the selection of future projections from climate model
simulations critically affects the prediction of water yield under
climate change (Stone et al., 2003).
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Based on uncertainty analyses using Bias and RMSE, an
expectation of decreased future streamflow and streamflow
variability is reasonable. However, future streamflow esti-
mates in this study are based on predicted changes in precip-
itation and temperature. Human activities, particularly related
to land transformations, may also have significant impacts on
the hydrologic cycle in these watersheds. Therefore, the
integration of projected land use changes in future
hydrologic modeling studies may help to refine streamflow
predictions.
5. Conclusions

We used the SWAT distributed hydrologic model in combina-
tion with the SUFI-2 multi-site calibration procedure to demon-
strate that spatial and temporal variation in streamflow over
large watersheds can be reasonably represented through multi-site
calibration and validation. Without the availability of distributed
hydrologic data for calibration and validation, distributed hydro-
logic models are best characterized as lumped models. Distributed
hydrologic models are more complex than lumped models in terms
of their structure and number of parameters. However, not all
model parameters are sensitive to the simulations of hydrologic re-
sponses, thereby providing the opportunity to reduce the number
of calibration parameters in the distributed models. Among the
20 parameters calibrated, only four parameters are found to be
sensitive in all four watersheds, suggesting the importance of mul-
ti-site calibration and validation across relatively large spatial
scales.

Many of the difficulties and limitations during calibration
and validation were data related. We used multi-site stream-
flow data to calibrate and validate the SWAT. However, stream-
flow is only one of the components of the water cycle, and
these data are widely available compared with other aspects
of the water cycle, such as evapotranspiration and soil mois-
ture. Soil moisture data should eventually be available across
Illinois, thus offering the opportunity to refine model
predictions.

The coupling of hydrologic models and GCM projections al-
lows for the prediction of future streamflow conditions. Using
climate model projections to drive the distributed hydrologic
simulations, our results suggest the potential for dramatic
changes in streamflow as well as streamflow variability during
the coming century in most watersheds in Illinois and adjacent
midwestern states. In particular, annual streamflows for 2051–
2060 (2086–2095) could decrease up to 45.2% (61.3%), 48.7%
(49.8%), 48.7% (56.6%), and 41.1% (44.6%) in the RRW, IRW,
KRW, and WRW, respectively, while the intra-annual stream-
flow variability will likely decrease in all watersheds in the
periods of 2051–2060 and 2086–2095 compared to that in
1990–1999. Such predictions of hydrologic response to the pro-
jected changes in future climate may provide the foundation
for water management strategies focused on the mitigation of
the impacts of climate change on aquatic resources and
ecosystems.
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Appendix A.

The GCM model groups, model designation, and acronym. Each
GCM has three SRES scenarios for future greenhouse gas emissions
forcing global climate. The three SRES scenarios are A2 (higher’’
emissions path), A1B (‘‘middle’’ emissions path), and B1 (‘‘lower’’
emissions path). GCM8 only has A2 and B1 scenarios. When the
GCM has multiple simulations featuring unique initial conditions
to simulate future climate projections, only the first run was
used.
Modeling group
 IPCC model
designation
Acronym
1
 Canadian Centre for Climate
Modeling and Analysis
CGCM3.1(T47)
 GCM1
2
 Meteo-France/Centre National
de Recherches
Meteorologiques, France
CNRM-CM3
 GCM2
3
 US Dept. of Commerce/NOAA/
Geophysical Fluid Dynamics
Laboratory, USA
GFDL-CM2.0
 GCM3
4
 US Dept. of Commerce/NOAA/
Geophysical Fluid Dynamics
Laboratory, USA
GFDL-CM2.1
 GCM4
5
 Institute Pierre Simon Laplace,
France
IPSL-CM4
 GCM5
6
 Center for Climate System
Research (The University of
Tokyo), National Institute for
Environmental Studies, and
Frontier Research Center for
Global Change (JAMSTEC),
Japan
MIROC3.2
(medres)
GCM6
7
 Meteorological Institute of the
University of Bonn,
Meteorological Research
Institute of KMA
ECHO-G
 GCM7
8
 Max Planck Institute for
Meteorology, Germany
ECHAM5/MPI-
OM
GCM8
9
 Meteorological Research
Institute, Japan
MRI-
CGCM2.3.2
GCM9
Appendix B.

Predicted annual streamflows for three periods 1990–1999,
2051–2060 and 2086–2095 in the RRW, IRW, KRW, and WRW
based on climate inputs from nine GCMs and three emission sce-
narios for each GCM (Appendix A). ‘‘na’’ indicates cases where rel-
evant emission scenarios were not available for the particular
GCM.



GCM1 GCM2 GCM3 GCM4 GCM5 GCM6 GCM7 GCM8 GCM9
RRW 1990–1999(GCM20c3m) 350.05 334.81 386.45 346.85 327.82 329.35 335.28 345.44 322.51

2051–2060(a2) 369.91 386.96 314.76 304.03 289.90 231.94 189.92 265.23 356.56
2051–2060(a1b) 381.60 347.32 211.64 299.93 240.52 208.24 300.70 na 375.75
2051–2060(b1) 351.16 398.52 228.55 315.04 282.29 279.50 207.01 296.72 354.90
2086–2095(a2) 336.08 302.07 189.22 280.30 153.05 127.41 349.00 356.74 349.28
2086–2095(a1b) 403.73 323.71 249.88 329.99 221.14 151.77 292.16 na 379.47
2086–2095(b1) 358.69 337.84 324.67 313.35 233.96 214.26 268.24 285.94 376.11

IRW 1990–1999(GCM20c3m) 379.54 343.65 418.71 387.46 356.99 348.22 369.32 377.14 346.62
2051–2060(a2) 412.18 370.81 320.85 344.73 323.32 259.27 241.11 319.70 410.77
2051–2060(a1b) 426.08 353.12 215.78 280.40 303.94 229.56 359.78 na 398.21
2051–2060(b1) 429.75 404.35 214.99 313.72 326.60 316.97 270.38 338.46 383.32
2086–2095(a2) 414.62 298.90 210.02 321.99 213.38 176.02 396.21 433.05 372.80
2086–2095(a1b) 462.84 368.91 278.21 400.53 268.38 189.20 341.75 na 397.75
2086–2095(b1) 393.80 364.77 322.85 366.23 295.48 278.91 322.89 333.45 416.94

KRW 1990–1999(GCM20c3m) 339.39 299.93 374.25 357.95 321.84 321.84 339.51 332.64 325.08
2051–2060(a2) 367.33 307.65 277.75 288.53 260.20 252.49 229.04 285.64 380.81
2051–2060(a1b) 264.09 269.70 192.20 229.07 264.09 203.61 325.80 na 327.98
2051–2060(b1) 379.61 369.70 192.05 282.91 258.17 290.21 250.01 304.41 322.22
2086–2095(a2) 369.19 259.29 162.42 298.80 173.89 174.00 346.47 424.38 349.17
2086–2095(a1b) 211.46 354.33 249.88 370.21 211.46 191.43 311.87 na 333.18
2086–2095(b1) 365.44 316.16 272.54 332.30 257.44 261.55 298.48 303.67 362.17

WRW 1990–1999(GCM20c3m) 430.04 408.68 478.29 444.93 416.86 402.72 432.18 424.93 406.21
2051–2060(a2) 467.79 440.01 397.46 406.31 321.76 333.41 311.99 388.32 452.99
2051–2060(a1b) 467.55 394.56 284.27 308.26 350.25 266.38 420.90 na 438.03
2051–2060(b1) 484.36 468.81 281.83 373.01 352.73 370.95 328.46 417.11 439.30
2086–2095(a2) 477.92 365.47 264.65 418.07 242.33 226.84 470.00 509.67 427.31
2086–2095(a1b) 514.94 452.48 346.17 472.96 321.81 242.80 390.34 na 416.80
2086–2095(b1) 482.97 440.42 373.32 442.19 339.01 337.30 364.71 416.17 438.02

Appendix C.

Intra-annual variability (Coefficient of variation (CV)) of predicted streamflow for three periods 1990–1999, 2051–2060 and 2086–2095
in the RRW, IRW, KRW, and WRW based on climate inputs from nine GCMs and three emission scenarios for each GCM (Appendix A). ‘‘na’’
indicates cases where relevant emission scenarios were not available for the particular GCM.

OBSNWS GCM1 GCM2 GCM3 GCM4 GCM5 GCM6 GCM7 GCM8 GCM9
RRW 1990–1999(GCM20c3m) 0.71 0.44 0.46 0.33 0.38 0.42 0.43 0.53 0.46 0.37

2051–2060(a2) 0.42 0.34 0.43 0.42 0.42 0.51 0.48 0.51 0.32
2051–2060(a1b) 0.41 0.40 0.53 0.47 0.48 0.46 0.59 na 0.33
2051–2060(b1) 0.49 0.40 0.51 0.44 0.39 0.45 0.59 0.43 0.33
2086–2095(a2) 0.42 0.47 0.64 0.44 0.61 0.79 0.45 0.48 0.40
2086–2095(a1b) 0.38 0.43 0.51 0.48 0.51 0.53 0.48 na 0.40
2086–2095(b1) 0.38 0.37 0.44 0.40 0.56 0.50 0.50 0.45 0.36

IRW 1990–1999(GCM20c3m) 0.97 0.80 0.90 0.67 0.77 0.81 0.81 0.93 0.79 0.73
2051–2060(a2) 0.85 0.76 0.89 0.93 0.96 1.02 1.02 0.90 0.68
2051–2060(a1b) 0.83 0.83 1.07 1.04 0.96 0.94 0.98 na 0.73
2051–2060(b1) 0.75 0.77 1.12 0.89 0.98 0.89 0.94 0.85 0.72
2086–2095(a2) 0.85 1.02 1.23 1.05 1.35 1.35 0.88 0.85 0.80
2086–2095(a1b) 0.80 0.87 0.97 1.06 1.18 1.18 1.00 na 0.80
2086–2095(b1) 0.77 0.81 0.92 0.86 1.12 0.98 0.86 0.89 0.78

KRW 1990–1999(GCM20c3m) 1.18 0.82 0.88 0.76 0.82 0.87 0.87 0.96 0.81 0.75
2051–2060(a2) 0.92 0.93 0.98 1.03 1.08 1.10 1.09 0.87 0.72
2051–2060(a1b) 1.13 0.89 1.09 1.10 1.13 1.09 1.07 na 0.83
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2051–2060(b1) 0.78 0.81 1.24 1.06 1.12 0.97 0.96 0.92 0.84
2086–2095(a2) 0.88 1.15 1.32 1.12 1.81 1.40 0.88 0.90 0.89
2086–2095(a1b) 1.25 0.94 1.03 1.11 1.25 1.24 1.06 na 0.90
2086–2095(b1) 0.84 0.96 0.93 0.95 1.26 1.04 1.00 0.95 0.83

WRW 1990–1999(GCM20c3m) 1.10 0.75 0.76 0.67 0.74 0.78 0.77 0.85 0.71 0.67
2051–2060(a2) 0.80 0.78 0.83 0.88 0.95 0.96 0.96 0.76 0.67
2051–2060(a1b) 0.81 0.79 1.01 1.02 0.99 0.98 0.96 na 0.72
2051–2060(b1) 0.70 0.75 0.99 0.92 0.95 0.84 0.90 0.79 0.74
2086–2095(a2) 0.82 0.99 1.14 1.01 1.44 1.29 0.84 0.80 0.80
2086–2095(a1b) 0.74 0.82 0.87 1.03 1.10 1.16 0.98 na 0.81
2086–2095(b1) 0.77 0.81 0.81 0.87 1.03 0.96 0.91 0.78 0.75
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