SVD computation example

Example: Find the SVD of $A, U \Sigma V^{T}$, where $A=\left(\begin{array}{ccc}3 & 2 & 2 \\ 2 & 3 & -2\end{array}\right)$.
First we compute the singular values σ_{i} by finding the eigenvalues of $A A^{T}$.

$$
A A^{T}=\left(\begin{array}{cc}
17 & 8 \\
8 & 17
\end{array}\right)
$$

The characteristic polynomial is $\operatorname{det}\left(A A^{T}-\lambda I\right)=\lambda^{2}-34 \lambda+225=(\lambda-25)(\lambda-9)$, so the singular values are $\sigma_{1}=\sqrt{25}=5$ and $\sigma_{2}=\sqrt{9}=3$.

Now we find the right singular vectors (the columns of V) by finding an orthonormal set of eigenvectors of $A^{T} A$. It is also possible to proceed by finding the left singular vectors (columns of U) instead. The eigenvalues of $A^{T} A$ are 25, 9, and 0 , and since $A^{T} A$ is symmetric we know that the eigenvectors will be orthogonal.

For $\lambda=25$, we have

$$
A^{T} A-25 I=\left(\begin{array}{ccc}
-12 & 12 & 2 \\
12 & -12 & -2 \\
2 & -2 & -17
\end{array}\right)
$$

which row-reduces to $\left(\begin{array}{ccc}1 & -1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right)$. A unit-length vector in the kernel of that matrix is $v_{1}=\left(\begin{array}{c}1 / \sqrt{2} \\ 1 / \sqrt{2} \\ 0\end{array}\right)$.

For $\lambda=9$ we have $A^{T} A-9 I=\left(\begin{array}{rrr}4 & 12 & 2 \\ 12 & 4 & -2 \\ 2 & -2 & -1\end{array}\right)$ which row-reduces to $\left(\begin{array}{rrr}1 & 0 & -\frac{1}{4} \\ 0 & 1 & \frac{1}{4} \\ 0 & 0 & 0\end{array}\right)$.
A unit-length vector in the kernel is $v_{2}=\left(\begin{array}{c}1 / \sqrt{18} \\ -1 / \sqrt{18} \\ 4 / \sqrt{18}\end{array}\right)$.
For the last eigenvector, we could compute the kernel of $A^{T} A$ or find a unit vector perpendicular to v_{1} and v_{2}. To be perpendicular to $v_{1}=\left(\begin{array}{c}a \\ b \\ c\end{array}\right)$ we need $-a=b$. Then the condition that $v_{2}^{T} v_{3}=0$ becomes $2 a / \sqrt{18}+4 c / \sqrt{18}=0$ or $-a=2 c$. So $v_{3}=\left(\begin{array}{c}a \\ -a \\ -a / 2\end{array}\right)$ and for it to be unit-length we need $a=2 / 3$ so $v_{3}=\left(\begin{array}{c}2 / 3 \\ -2 / 3 \\ -1 / 3\end{array}\right)$.

So at this point we know that

$$
A=U \Sigma V^{T}=U\left(\begin{array}{lll}
5 & 0 & 0 \\
0 & 3 & 0
\end{array}\right)\left(\begin{array}{rrr}
1 / \sqrt{2} & 1 / \sqrt{2} & 0 \\
1 / \sqrt{18} & -1 / \sqrt{18} & 4 / \sqrt{18} \\
2 / 3 & -2 / 3 & -1 / 3
\end{array}\right)
$$

Finally, we can compute U by the formula $\sigma u_{i}=A v_{i}$, or $u_{i}=\frac{1}{\sigma} A v_{i}$. This gives $U=\left(\begin{array}{cc}1 / \sqrt{2} & 1 / \sqrt{2} \\ 1 / \sqrt{2} & -1 / \sqrt{2}\end{array}\right)$. So in its full glory the SVD is:

$$
A=U \Sigma V^{T}=\left(\begin{array}{cc}
1 / \sqrt{2} & 1 / \sqrt{2} \\
1 / \sqrt{2} & -1 / \sqrt{2}
\end{array}\right)\left(\begin{array}{rrr}
5 & 0 & 0 \\
0 & 3 & 0
\end{array}\right)\left(\begin{array}{rrr}
1 / \sqrt{2} & 1 / \sqrt{2} & 0 \\
1 / \sqrt{18} & -1 / \sqrt{18} & 4 / \sqrt{18} \\
2 / 3 & -2 / 3 & -1 / 3
\end{array}\right) .
$$

